Cargando…
LMFD: lightweight multi-feature descriptors for image stitching
Image stitching is a fundamental pillar of computer vision, and its effectiveness hinges significantly on the quality of the feature descriptors. However, the existing feature descriptors face several challenges, including inadequate robustness to noise or rotational transformations and limited adap...
Autores principales: | Fan, Yingbo, Mao, Shanjun, Li, Mei, Kang, Jitong, Li, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689729/ https://www.ncbi.nlm.nih.gov/pubmed/38036564 http://dx.doi.org/10.1038/s41598-023-48432-7 |
Ejemplares similares
-
AdaSG: A Lightweight Feature Point Matching Method Using Adaptive Descriptor with GNN for VSLAM
por: Liu, Ye, et al.
Publicado: (2022) -
Malicious Activity Detection in Lightweight Wearable and IoT Devices Using Signal Stitching
por: Karabacak, Fatih, et al.
Publicado: (2021) -
Feature Correspondences Increase and Hybrid Terms Optimization Warp for Image Stitching
por: Cong, Yizhi, et al.
Publicado: (2023) -
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System
por: Lu, Yu, et al.
Publicado: (2016) -
Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching
por: Fan, Xiaoting, et al.
Publicado: (2023)