Cargando…
Predicting target lesion failure following percutaneous coronary intervention through machine learning risk assessment models
AIMS: Central to the practice of precision medicine in percutaneous coronary intervention (PCI) is a risk-stratification tool to predict outcomes following the procedure. This study is intended to assess machine learning (ML)-based risk models to predict clinically relevant outcomes in PCI and to su...
Autores principales: | Mamas, Mamas A, Roffi, Marco, Fröbert, Ole, Chieffo, Alaide, Beneduce, Alessandro, Matetic, Andrija, Tonino, Pim A L, Paunovic, Dragica, Jacobs, Lotte, Debrus, Roxane, El Aissaoui, Jérémy, van Leeuwen, Frank, Kontopantelis, Evangelos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689920/ https://www.ncbi.nlm.nih.gov/pubmed/38045434 http://dx.doi.org/10.1093/ehjdh/ztad051 |
Ejemplares similares
-
Clinical Outcomes of Percutaneous Coronary Intervention for Bifurcation Lesions According to Medina Classification
por: Mohamed, Mohamed O., et al.
Publicado: (2022) -
Impact of extracardiac vascular disease on outcomes of 1.4 million patients undergoing percutaneous coronary intervention
por: Bashar, Hussein, et al.
Publicado: (2022) -
How Common Is Pre-Existing Cardiovascular Disease in Cancer Patients: What Do We Know? Does It Matter?
por: Mamas, Mamas A., et al.
Publicado: (2022) -
Impact of multisite artery disease on clinical outcomes after percutaneous coronary intervention: an analysis from the e-Ultimaster registry
por: Kobo, Ofer, et al.
Publicado: (2022) -
Temporal trends in relative survival following percutaneous coronary intervention
por: Hulme, William J, et al.
Publicado: (2019)