Cargando…

Characterization and in vivo evaluation of a fabricated absorbable poly(vinyl alcohol)-based hernia mesh

The most widely taken medical approach toward hernia repair involves the implementation of a prosthetic mesh to cover the herniated site and reinforce the weakened area of the abdominal wall. Biodegradable meshes can serve as biocompatible grafts with a low risk of infection. However, their major co...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorkhani, Erfan, Darzi, Bahareh, Foroutani, Laleh, Ebrahim Soltani, Zahra, Ahmadi Tafti, Seyed Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689958/
https://www.ncbi.nlm.nih.gov/pubmed/38045132
http://dx.doi.org/10.1016/j.heliyon.2023.e22279
Descripción
Sumario:The most widely taken medical approach toward hernia repair involves the implementation of a prosthetic mesh to cover the herniated site and reinforce the weakened area of the abdominal wall. Biodegradable meshes can serve as biocompatible grafts with a low risk of infection. However, their major complication is associated with a high rate of degradation and hernia recurrence. We proposed a facile and cost-effective method to fabricate a poly(vinyl alcohol)-based mesh, using the solution casting technique. The inclusion of zinc oxide nanoparticles, citric acid, and three cycles of freeze-thaw were intended to ameliorate the mechanical properties of poly(vinyl alcohol). Several characterization, cell culture, and animal studies were conducted. Swelling and water contact angle measurements confirmed good water uptake capacity and wetting behavior of the final mesh sample. The synthesized mesh acquired a high mechanical strength of 52.8 MPa, and its weight loss was decreased to 39 %. No cytotoxicity was found in all samples. In vivo experiments revealed that less adhesion and granuloma formation, greater tissue integration, and notably higher neovascularization rate were resulted from implanting this fabricated hernia mesh, compared to commercial Prolene® mesh. Furthermore, the amount of collagen deposition and influential growth factors were enhanced when rats were treated with the proposed mesh instead of Prolene®.