Cargando…

A chemo-mechanical model of endoderm movements driving elongation of the amniote hindgut

Although mechanical and biochemical descriptions of development are each essential, integration of upstream morphogenic cues with downstream tissue mechanics remains understudied during vertebrate morphogenesis. Here, we developed a two-dimensional chemo-mechanical model to investigate how mechanica...

Descripción completa

Detalles Bibliográficos
Autores principales: Oikonomou, Panagiotis, Cirne, Helena C., Nerurkar, Nandan L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690059/
https://www.ncbi.nlm.nih.gov/pubmed/37840469
http://dx.doi.org/10.1242/dev.202010
Descripción
Sumario:Although mechanical and biochemical descriptions of development are each essential, integration of upstream morphogenic cues with downstream tissue mechanics remains understudied during vertebrate morphogenesis. Here, we developed a two-dimensional chemo-mechanical model to investigate how mechanical properties of the endoderm and transport properties of fibroblast growth factor (FGF) regulate avian hindgut morphogenesis in a coordinated manner. Posterior endoderm cells convert a gradient of FGF ligands into a contractile force gradient, leading to a force imbalance that drives collective cell movements that elongate the forming hindgut tube. We formulated a 2D reaction-diffusion-advection model describing the formation of an FGF protein gradient as a result of posterior displacement of cells transcribing unstable Fgf8 mRNA during axis elongation, coupled with translation, diffusion and degradation of FGF protein. The endoderm was modeled as an active viscous fluid that generates contractile stresses in proportion to FGF concentration. With parameter values constrained by experimental data, the model replicates key aspects of hindgut morphogenesis, suggests that graded isotropic contraction is sufficient to generate large anisotropic cell movements, and provides new insight into how chemo-mechanical coupling across the mesoderm and endoderm coordinates hindgut elongation with axis elongation.