Cargando…
SLIViT: a general AI framework for clinical-feature diagnosis from limited 3D biomedical-imaging data
We present SLIViT, a deep-learning framework that accurately measures disease-related risk factors in volumetric biomedical imaging, such as magnetic resonance imaging (MRI) scans, optical coherence tomography (OCT) scans, and ultrasound videos. To evaluate SLIViT, we applied it to five different da...
Autores principales: | Avram*, Oren, Durmus*, Berkin, Rakocz, Nadav, Corradetti, Giulia, An, Ulzee, Nitalla, Muneeswar G., Rudas, Ákos, Wakatsuki, Yu, Hirabayashi, Kazutaka, Velaga, Swetha, Tiosano, Liran, Corvi, Federico, Verma, Aditya, Karamat, Ayesha, Lindenberg, Sophiana, Oncel, Deniz, Almidani, Louay, Hull, Victoria, Fasih-Ahmad, Sohaib, Esmaeilkhanian, Houri, Wykoff, Charles C., Rahmani, Elior, Arnold, Corey W., Zhou, Bolei, Zaitlen, Noah, Gronau, Ilan, Sankararaman, Sriram, Chiang, Jeffrey N., Sadda**, Srinivas R., Halperin**, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690310/ https://www.ncbi.nlm.nih.gov/pubmed/38045283 http://dx.doi.org/10.21203/rs.3.rs-3044914/v2 |
Ejemplares similares
-
Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
por: Rakocz, Nadav, et al.
Publicado: (2021) -
Phenotypic subtyping via contrastive learning
por: Gorla, Aditya, et al.
Publicado: (2023) -
Automated large-scale prediction of exudative AMD progression using machine-read OCT biomarkers
por: Rudas, Akos, et al.
Publicado: (2023) -
Methylation risk scores are associated with a collection of phenotypes within electronic health record systems
por: Thompson, Mike, et al.
Publicado: (2022) -
Risk Factors for Progression of Age-Related Macular Degeneration: Population-Based Amish Eye Study
por: Nittala, Muneeswar G., et al.
Publicado: (2022)