Cargando…
Estimating the Trial-by-Trial Learning Curve in Perceptual Learning with Hierarchical Bayesian Modeling
The learning curve serves as a crucial metric for assessing human performance in perceptual learning. It may encompass various component processes, including general learning, between-session forgetting or consolidation, and within-session rapid relearning and adaptation or deterioration. Typically,...
Autores principales: | Zhao, Yukai, Liu, Jiajuan, Dosher, Barbara Anne, Lu, Zhong-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690334/ https://www.ncbi.nlm.nih.gov/pubmed/38045291 http://dx.doi.org/10.21203/rs.3.rs-3649060/v1 |
Ejemplares similares
-
Hierarchical Bayesian perceptual template modeling of mechanisms of spatial attention in central and peripheral cuing
por: Lu, Zhong-Lin, et al.
Publicado: (2023) -
Assessing the detailed time course of perceptual sensitivity change in perceptual learning
por: Zhang, Pan, et al.
Publicado: (2019) -
Mixture of easy trials enables transient and sustained perceptual improvements through priming and perceptual learning
por: Lin, Zhicheng, et al.
Publicado: (2017) -
Evaluating the performance of the staircase and quick Change Detection methods in measuring perceptual learning
por: Zhang, Pan, et al.
Publicado: (2019) -
Learning spatial frequency identification through reweighted decoding
por: Dosher, Barbara, et al.
Publicado: (2023)