Cargando…
An efficient context-aware approach for whole-slide image classification
Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690557/ https://www.ncbi.nlm.nih.gov/pubmed/38047071 http://dx.doi.org/10.1016/j.isci.2023.108175 |
_version_ | 1785152546748235776 |
---|---|
author | Shen, Hongru Wu, Jianghua Shen, Xilin Hu, Jiani Liu, Jilei Zhang, Qiang Sun, Yan Chen, Kexin Li, Xiangchun |
author_facet | Shen, Hongru Wu, Jianghua Shen, Xilin Hu, Jiani Liu, Jilei Zhang, Qiang Sun, Yan Chen, Kexin Li, Xiangchun |
author_sort | Shen, Hongru |
collection | PubMed |
description | Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%–83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910–0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87–0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools. |
format | Online Article Text |
id | pubmed-10690557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106905572023-12-02 An efficient context-aware approach for whole-slide image classification Shen, Hongru Wu, Jianghua Shen, Xilin Hu, Jiani Liu, Jilei Zhang, Qiang Sun, Yan Chen, Kexin Li, Xiangchun iScience Article Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%–83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910–0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87–0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools. Elsevier 2023-10-12 /pmc/articles/PMC10690557/ /pubmed/38047071 http://dx.doi.org/10.1016/j.isci.2023.108175 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Shen, Hongru Wu, Jianghua Shen, Xilin Hu, Jiani Liu, Jilei Zhang, Qiang Sun, Yan Chen, Kexin Li, Xiangchun An efficient context-aware approach for whole-slide image classification |
title | An efficient context-aware approach for whole-slide image classification |
title_full | An efficient context-aware approach for whole-slide image classification |
title_fullStr | An efficient context-aware approach for whole-slide image classification |
title_full_unstemmed | An efficient context-aware approach for whole-slide image classification |
title_short | An efficient context-aware approach for whole-slide image classification |
title_sort | efficient context-aware approach for whole-slide image classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690557/ https://www.ncbi.nlm.nih.gov/pubmed/38047071 http://dx.doi.org/10.1016/j.isci.2023.108175 |
work_keys_str_mv | AT shenhongru anefficientcontextawareapproachforwholeslideimageclassification AT wujianghua anefficientcontextawareapproachforwholeslideimageclassification AT shenxilin anefficientcontextawareapproachforwholeslideimageclassification AT hujiani anefficientcontextawareapproachforwholeslideimageclassification AT liujilei anefficientcontextawareapproachforwholeslideimageclassification AT zhangqiang anefficientcontextawareapproachforwholeslideimageclassification AT sunyan anefficientcontextawareapproachforwholeslideimageclassification AT chenkexin anefficientcontextawareapproachforwholeslideimageclassification AT lixiangchun anefficientcontextawareapproachforwholeslideimageclassification AT shenhongru efficientcontextawareapproachforwholeslideimageclassification AT wujianghua efficientcontextawareapproachforwholeslideimageclassification AT shenxilin efficientcontextawareapproachforwholeslideimageclassification AT hujiani efficientcontextawareapproachforwholeslideimageclassification AT liujilei efficientcontextawareapproachforwholeslideimageclassification AT zhangqiang efficientcontextawareapproachforwholeslideimageclassification AT sunyan efficientcontextawareapproachforwholeslideimageclassification AT chenkexin efficientcontextawareapproachforwholeslideimageclassification AT lixiangchun efficientcontextawareapproachforwholeslideimageclassification |