Cargando…

An efficient context-aware approach for whole-slide image classification

Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Hongru, Wu, Jianghua, Shen, Xilin, Hu, Jiani, Liu, Jilei, Zhang, Qiang, Sun, Yan, Chen, Kexin, Li, Xiangchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690557/
https://www.ncbi.nlm.nih.gov/pubmed/38047071
http://dx.doi.org/10.1016/j.isci.2023.108175
_version_ 1785152546748235776
author Shen, Hongru
Wu, Jianghua
Shen, Xilin
Hu, Jiani
Liu, Jilei
Zhang, Qiang
Sun, Yan
Chen, Kexin
Li, Xiangchun
author_facet Shen, Hongru
Wu, Jianghua
Shen, Xilin
Hu, Jiani
Liu, Jilei
Zhang, Qiang
Sun, Yan
Chen, Kexin
Li, Xiangchun
author_sort Shen, Hongru
collection PubMed
description Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%–83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910–0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87–0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools.
format Online
Article
Text
id pubmed-10690557
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106905572023-12-02 An efficient context-aware approach for whole-slide image classification Shen, Hongru Wu, Jianghua Shen, Xilin Hu, Jiani Liu, Jilei Zhang, Qiang Sun, Yan Chen, Kexin Li, Xiangchun iScience Article Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%–83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910–0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87–0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools. Elsevier 2023-10-12 /pmc/articles/PMC10690557/ /pubmed/38047071 http://dx.doi.org/10.1016/j.isci.2023.108175 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Shen, Hongru
Wu, Jianghua
Shen, Xilin
Hu, Jiani
Liu, Jilei
Zhang, Qiang
Sun, Yan
Chen, Kexin
Li, Xiangchun
An efficient context-aware approach for whole-slide image classification
title An efficient context-aware approach for whole-slide image classification
title_full An efficient context-aware approach for whole-slide image classification
title_fullStr An efficient context-aware approach for whole-slide image classification
title_full_unstemmed An efficient context-aware approach for whole-slide image classification
title_short An efficient context-aware approach for whole-slide image classification
title_sort efficient context-aware approach for whole-slide image classification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690557/
https://www.ncbi.nlm.nih.gov/pubmed/38047071
http://dx.doi.org/10.1016/j.isci.2023.108175
work_keys_str_mv AT shenhongru anefficientcontextawareapproachforwholeslideimageclassification
AT wujianghua anefficientcontextawareapproachforwholeslideimageclassification
AT shenxilin anefficientcontextawareapproachforwholeslideimageclassification
AT hujiani anefficientcontextawareapproachforwholeslideimageclassification
AT liujilei anefficientcontextawareapproachforwholeslideimageclassification
AT zhangqiang anefficientcontextawareapproachforwholeslideimageclassification
AT sunyan anefficientcontextawareapproachforwholeslideimageclassification
AT chenkexin anefficientcontextawareapproachforwholeslideimageclassification
AT lixiangchun anefficientcontextawareapproachforwholeslideimageclassification
AT shenhongru efficientcontextawareapproachforwholeslideimageclassification
AT wujianghua efficientcontextawareapproachforwholeslideimageclassification
AT shenxilin efficientcontextawareapproachforwholeslideimageclassification
AT hujiani efficientcontextawareapproachforwholeslideimageclassification
AT liujilei efficientcontextawareapproachforwholeslideimageclassification
AT zhangqiang efficientcontextawareapproachforwholeslideimageclassification
AT sunyan efficientcontextawareapproachforwholeslideimageclassification
AT chenkexin efficientcontextawareapproachforwholeslideimageclassification
AT lixiangchun efficientcontextawareapproachforwholeslideimageclassification