Cargando…

Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies

[Image: see text] In drinking water distribution systems, the oxidation of zerovalent chromium, Cr(0), in iron corrosion scales by chlorine residual disinfectant is the dominant reaction to form carcinogenic hexavalent chromium, Cr(VI). This study investigates inhibitive corrosion control strategies...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Cheng, Liu, Haizhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690716/
https://www.ncbi.nlm.nih.gov/pubmed/36719710
http://dx.doi.org/10.1021/acs.est.2c05324
_version_ 1785152582572834816
author Tan, Cheng
Liu, Haizhou
author_facet Tan, Cheng
Liu, Haizhou
author_sort Tan, Cheng
collection PubMed
description [Image: see text] In drinking water distribution systems, the oxidation of zerovalent chromium, Cr(0), in iron corrosion scales by chlorine residual disinfectant is the dominant reaction to form carcinogenic hexavalent chromium, Cr(VI). This study investigates inhibitive corrosion control strategies through adjustments of chemical water parameters (i.e., pH, silicate, phosphate, calcium, and alkalinity) on Cr(VI) formation through oxidation of Cr(0)((s)) by free chlorine under drinking water conditions. The results show that an increase in pH, silicate, alkalinity, and calcium suppressed Cr(VI) formation that was mainly attributed to in situ surface precipitation of new Cr(III) solids on the surface of Cr(0)((s)), including Cr(OH)(3(s)), Cr(2)(SiO(3))(3(s)), CrPO(4(s)), Cr(2)(CO(3))(3(s)), and Cr(10)Ca(CO(3))(16(s)). The Cr(III) surface precipitates were much less reactive with chlorine than Cr(0)((s)) and suppressed the Cr redox reactivity. The concentration of surface Cr(III) solids was inversely correlated with the rate constant of Cr(VI) formation. Adding phosphate either promoted or inhibited the Cr(VI) formation, depending on the phosphate concentration. This study provides fundamental insight into the Cr(VI) formation mechanisms via Cr(0) oxidation by chlorine and the importance of surface precipitation of Cr(III) solids with different corrosion control strategies and suggests that increasing the pH/alkalinity and addition of phosphate or silicate can be effective control strategies to minimize Cr(VI) formation.
format Online
Article
Text
id pubmed-10690716
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106907162023-12-02 Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies Tan, Cheng Liu, Haizhou Environ Sci Technol [Image: see text] In drinking water distribution systems, the oxidation of zerovalent chromium, Cr(0), in iron corrosion scales by chlorine residual disinfectant is the dominant reaction to form carcinogenic hexavalent chromium, Cr(VI). This study investigates inhibitive corrosion control strategies through adjustments of chemical water parameters (i.e., pH, silicate, phosphate, calcium, and alkalinity) on Cr(VI) formation through oxidation of Cr(0)((s)) by free chlorine under drinking water conditions. The results show that an increase in pH, silicate, alkalinity, and calcium suppressed Cr(VI) formation that was mainly attributed to in situ surface precipitation of new Cr(III) solids on the surface of Cr(0)((s)), including Cr(OH)(3(s)), Cr(2)(SiO(3))(3(s)), CrPO(4(s)), Cr(2)(CO(3))(3(s)), and Cr(10)Ca(CO(3))(16(s)). The Cr(III) surface precipitates were much less reactive with chlorine than Cr(0)((s)) and suppressed the Cr redox reactivity. The concentration of surface Cr(III) solids was inversely correlated with the rate constant of Cr(VI) formation. Adding phosphate either promoted or inhibited the Cr(VI) formation, depending on the phosphate concentration. This study provides fundamental insight into the Cr(VI) formation mechanisms via Cr(0) oxidation by chlorine and the importance of surface precipitation of Cr(III) solids with different corrosion control strategies and suggests that increasing the pH/alkalinity and addition of phosphate or silicate can be effective control strategies to minimize Cr(VI) formation. American Chemical Society 2023-01-31 /pmc/articles/PMC10690716/ /pubmed/36719710 http://dx.doi.org/10.1021/acs.est.2c05324 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Tan, Cheng
Liu, Haizhou
Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title_full Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title_fullStr Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title_full_unstemmed Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title_short Inhibition of Hexavalent Chromium Release from Drinking Water Distribution Systems: Effects of Water Chemistry-Based Corrosion Control Strategies
title_sort inhibition of hexavalent chromium release from drinking water distribution systems: effects of water chemistry-based corrosion control strategies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690716/
https://www.ncbi.nlm.nih.gov/pubmed/36719710
http://dx.doi.org/10.1021/acs.est.2c05324
work_keys_str_mv AT tancheng inhibitionofhexavalentchromiumreleasefromdrinkingwaterdistributionsystemseffectsofwaterchemistrybasedcorrosioncontrolstrategies
AT liuhaizhou inhibitionofhexavalentchromiumreleasefromdrinkingwaterdistributionsystemseffectsofwaterchemistrybasedcorrosioncontrolstrategies