Cargando…
Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations
Satellite microwave sensors are well suited for monitoring landscape freeze-thaw (FT) transitions owing to the strong brightness temperature (TB) or backscatter response to changes in liquid water abundance between predominantly frozen and thawed conditions. The FT retrieval is also a sensitive clim...
Autores principales: | Donahue, Kellen, Kimball, John S., Du, Jinyang, Bunt, Fredrick, Colliander, Andreas, Moghaddam, Mahta, Johnson, Jesse, Kim, Youngwook, Rawlins, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690831/ https://www.ncbi.nlm.nih.gov/pubmed/38045095 http://dx.doi.org/10.3389/fdata.2023.1243559 |
Ejemplares similares
-
Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations
por: Fang, Li, et al.
Publicado: (2022) -
Changing features of the Northern Hemisphere 500-hPa circumpolar vortex
por: Bushra, Nazla, et al.
Publicado: (2023) -
DeepEmSat: Deep Emulation for Satellite Data Mining
por: Duffy, Kate, et al.
Publicado: (2019) -
Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over High Mountain Asia
por: Xue, Yuan, et al.
Publicado: (2019) -
Heat transfer with freezing and thawing
por: Lunardini, VJ
Publicado: (1991)