Cargando…
Application of graph frequency attention convolutional neural networks in depression treatment response
Depression, a prevalent global mental health disorder, necessitates precise treatment response prediction for the improvement of personalized care and patient prognosis. The Graph Convolutional Neural Networks (GCNs) have emerged as a promising technique for handling intricate signals and classifica...
Autores principales: | Lu, Zihe, Wang, Jialin, Wang, Fengqin, Wu, Zhoumin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690947/ https://www.ncbi.nlm.nih.gov/pubmed/38045613 http://dx.doi.org/10.3389/fpsyt.2023.1244208 |
Ejemplares similares
-
Measuring depression severity based on facial expression and body movement using deep convolutional neural network
por: Liu, Dongdong, et al.
Publicado: (2022) -
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction
por: Wang, Xianfang, et al.
Publicado: (2020) -
Ensemble graph neural network model for classification of major depressive disorder using whole-brain functional connectivity
por: Venkatapathy, Sujitha, et al.
Publicado: (2023) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022)