Cargando…
TargetRNA3: predicting prokaryotic RNA regulatory targets with machine learning
Small regulatory RNAs pervade prokaryotes, with the best-studied family of these non-coding genes corresponding to trans-acting regulators that bind via base pairing to their message targets. Given the increasing frequency with which these genes are being identified, it is important that methods for...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691042/ https://www.ncbi.nlm.nih.gov/pubmed/38041165 http://dx.doi.org/10.1186/s13059-023-03117-2 |
Sumario: | Small regulatory RNAs pervade prokaryotes, with the best-studied family of these non-coding genes corresponding to trans-acting regulators that bind via base pairing to their message targets. Given the increasing frequency with which these genes are being identified, it is important that methods for illuminating their regulatory targets keep pace. Using a machine learning approach, we investigate thousands of interactions between small RNAs and their targets, and we interrogate more than a hundred features indicative of these interactions. We present a new method, TargetRNA3, for predicting targets of small RNA regulators and show that it outperforms existing approaches. TargetRNA3 is available at https://cs.wellesley.edu/~btjaden/TargetRNA3. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03117-2. |
---|