Cargando…
Pest recognition based on multi-image feature localization and adaptive filtering fusion
Accurate recognition of pest categories is crucial for effective pest control. Due to issues such as the large variation in pest appearance, low data quality, and complex real-world environments, pest recognition poses challenges in practical applications. At present, many models have made great eff...
Autores principales: | Chen, Yanan, Chen, Miao, Guo, Minghui, Wang, Jianji, Zheng, Nanning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691105/ https://www.ncbi.nlm.nih.gov/pubmed/38046604 http://dx.doi.org/10.3389/fpls.2023.1282212 |
Ejemplares similares
-
ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family
por: Xu, Lijia, et al.
Publicado: (2023) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022) -
Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition
por: Lin, Hong, et al.
Publicado: (2022) -
Cotton boll localization method based on point annotation and multi-scale fusion
por: Sun, Ming, et al.
Publicado: (2022) -
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting
por: Wen, Changji, et al.
Publicado: (2022)