Cargando…

Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Chang, Kokosza, Andrzej, Xie, Xiaonan, Pěnčík, Aleš, Zhang, Youjun, Raumonen, Pasi, Shi, Xueping, Muranen, Sampo, Topcu, Melis Kucukoglu, Immanen, Juha, Hagqvist, Risto, Safronov, Omid, Alonso-Serra, Juan, Eswaran, Gugan, Venegas, Mirko Pavicic, Ljung, Karin, Ward, Sally, Mähönen, Ari Pekka, Himanen, Kristiina, Salojärvi, Jarkko, Fernie, Alisdair R., Novák, Ondřej, Leyser, Ottoline, Pałubicki, Wojtek, Helariutta, Ykä, Nieminen, Kaisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691325/
https://www.ncbi.nlm.nih.gov/pubmed/37991945
http://dx.doi.org/10.1073/pnas.2308587120
_version_ 1785152716874448896
author Su, Chang
Kokosza, Andrzej
Xie, Xiaonan
Pěnčík, Aleš
Zhang, Youjun
Raumonen, Pasi
Shi, Xueping
Muranen, Sampo
Topcu, Melis Kucukoglu
Immanen, Juha
Hagqvist, Risto
Safronov, Omid
Alonso-Serra, Juan
Eswaran, Gugan
Venegas, Mirko Pavicic
Ljung, Karin
Ward, Sally
Mähönen, Ari Pekka
Himanen, Kristiina
Salojärvi, Jarkko
Fernie, Alisdair R.
Novák, Ondřej
Leyser, Ottoline
Pałubicki, Wojtek
Helariutta, Ykä
Nieminen, Kaisa
author_facet Su, Chang
Kokosza, Andrzej
Xie, Xiaonan
Pěnčík, Aleš
Zhang, Youjun
Raumonen, Pasi
Shi, Xueping
Muranen, Sampo
Topcu, Melis Kucukoglu
Immanen, Juha
Hagqvist, Risto
Safronov, Omid
Alonso-Serra, Juan
Eswaran, Gugan
Venegas, Mirko Pavicic
Ljung, Karin
Ward, Sally
Mähönen, Ari Pekka
Himanen, Kristiina
Salojärvi, Jarkko
Fernie, Alisdair R.
Novák, Ondřej
Leyser, Ottoline
Pałubicki, Wojtek
Helariutta, Ykä
Nieminen, Kaisa
author_sort Su, Chang
collection PubMed
description Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.
format Online
Article
Text
id pubmed-10691325
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-106913252023-12-02 Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem Su, Chang Kokosza, Andrzej Xie, Xiaonan Pěnčík, Aleš Zhang, Youjun Raumonen, Pasi Shi, Xueping Muranen, Sampo Topcu, Melis Kucukoglu Immanen, Juha Hagqvist, Risto Safronov, Omid Alonso-Serra, Juan Eswaran, Gugan Venegas, Mirko Pavicic Ljung, Karin Ward, Sally Mähönen, Ari Pekka Himanen, Kristiina Salojärvi, Jarkko Fernie, Alisdair R. Novák, Ondřej Leyser, Ottoline Pałubicki, Wojtek Helariutta, Ykä Nieminen, Kaisa Proc Natl Acad Sci U S A Biological Sciences Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture. National Academy of Sciences 2023-11-22 2023-11-28 /pmc/articles/PMC10691325/ /pubmed/37991945 http://dx.doi.org/10.1073/pnas.2308587120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Su, Chang
Kokosza, Andrzej
Xie, Xiaonan
Pěnčík, Aleš
Zhang, Youjun
Raumonen, Pasi
Shi, Xueping
Muranen, Sampo
Topcu, Melis Kucukoglu
Immanen, Juha
Hagqvist, Risto
Safronov, Omid
Alonso-Serra, Juan
Eswaran, Gugan
Venegas, Mirko Pavicic
Ljung, Karin
Ward, Sally
Mähönen, Ari Pekka
Himanen, Kristiina
Salojärvi, Jarkko
Fernie, Alisdair R.
Novák, Ondřej
Leyser, Ottoline
Pałubicki, Wojtek
Helariutta, Ykä
Nieminen, Kaisa
Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title_full Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title_fullStr Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title_full_unstemmed Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title_short Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
title_sort tree architecture: a strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691325/
https://www.ncbi.nlm.nih.gov/pubmed/37991945
http://dx.doi.org/10.1073/pnas.2308587120
work_keys_str_mv AT suchang treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT kokoszaandrzej treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT xiexiaonan treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT pencikales treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT zhangyoujun treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT raumonenpasi treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT shixueping treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT muranensampo treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT topcumeliskucukoglu treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT immanenjuha treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT hagqvistristo treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT safronovomid treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT alonsoserrajuan treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT eswarangugan treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT venegasmirkopavicic treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT ljungkarin treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT wardsally treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT mahonenaripekka treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT himanenkristiina treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT salojarvijarkko treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT ferniealisdairr treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT novakondrej treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT leyserottoline treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT pałubickiwojtek treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT helariuttayka treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem
AT nieminenkaisa treearchitectureastrigolactonedeficientmutantrevealsaconnectionbetweenbranchingorderandauxingradientalongthetreestem