Cargando…

An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae

Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae—a microbial cell widely used industrially for ethanol productio...

Descripción completa

Detalles Bibliográficos
Autores principales: Vargas, Beatriz de Oliveira, dos Santos, Jade Ribeiro, Pereira, Gonçalo Amarante Guimarães, de Mello, Fellipe da Silveira Bezerra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691383/
https://www.ncbi.nlm.nih.gov/pubmed/38047029
http://dx.doi.org/10.7717/peerj.16340
_version_ 1785152728182292480
author Vargas, Beatriz de Oliveira
dos Santos, Jade Ribeiro
Pereira, Gonçalo Amarante Guimarães
de Mello, Fellipe da Silveira Bezerra
author_facet Vargas, Beatriz de Oliveira
dos Santos, Jade Ribeiro
Pereira, Gonçalo Amarante Guimarães
de Mello, Fellipe da Silveira Bezerra
author_sort Vargas, Beatriz de Oliveira
collection PubMed
description Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae—a microbial cell widely used industrially for ethanol production—is unable to assimilate this sugar. Hence, in a world with raising environmental awareness, the efficient fermentation of pentoses is a crucial bottleneck to producing biofuels from renewable biomass resources. In this context, advances in the genetic mapping of S. cerevisiae have contributed to noteworthy progress in the understanding of xylose metabolism in yeast, as well as the identification of gene targets that enable the development of tailored strains for cellulosic ethanol production. Accordingly, this review focuses on the main strategies employed to understand the network of genes that are directly or indirectly related to this phenotype, and their respective contributions to xylose consumption in S. cerevisiae, especially for ethanol production. Altogether, the information in this work summarizes the most recent and relevant results from scientific investigations that endowed S. cerevisiae with an outstanding capability for commercial ethanol production from xylose.
format Online
Article
Text
id pubmed-10691383
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-106913832023-12-02 An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae Vargas, Beatriz de Oliveira dos Santos, Jade Ribeiro Pereira, Gonçalo Amarante Guimarães de Mello, Fellipe da Silveira Bezerra PeerJ Bioengineering Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae—a microbial cell widely used industrially for ethanol production—is unable to assimilate this sugar. Hence, in a world with raising environmental awareness, the efficient fermentation of pentoses is a crucial bottleneck to producing biofuels from renewable biomass resources. In this context, advances in the genetic mapping of S. cerevisiae have contributed to noteworthy progress in the understanding of xylose metabolism in yeast, as well as the identification of gene targets that enable the development of tailored strains for cellulosic ethanol production. Accordingly, this review focuses on the main strategies employed to understand the network of genes that are directly or indirectly related to this phenotype, and their respective contributions to xylose consumption in S. cerevisiae, especially for ethanol production. Altogether, the information in this work summarizes the most recent and relevant results from scientific investigations that endowed S. cerevisiae with an outstanding capability for commercial ethanol production from xylose. PeerJ Inc. 2023-11-28 /pmc/articles/PMC10691383/ /pubmed/38047029 http://dx.doi.org/10.7717/peerj.16340 Text en ©2023 Vargas et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Bioengineering
Vargas, Beatriz de Oliveira
dos Santos, Jade Ribeiro
Pereira, Gonçalo Amarante Guimarães
de Mello, Fellipe da Silveira Bezerra
An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title_full An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title_fullStr An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title_full_unstemmed An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title_short An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
title_sort atlas of rational genetic engineering strategies for improved xylose metabolism in saccharomyces cerevisiae
topic Bioengineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691383/
https://www.ncbi.nlm.nih.gov/pubmed/38047029
http://dx.doi.org/10.7717/peerj.16340
work_keys_str_mv AT vargasbeatrizdeoliveira anatlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT dossantosjaderibeiro anatlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT pereiragoncaloamaranteguimaraes anatlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT demellofellipedasilveirabezerra anatlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT vargasbeatrizdeoliveira atlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT dossantosjaderibeiro atlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT pereiragoncaloamaranteguimaraes atlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae
AT demellofellipedasilveirabezerra atlasofrationalgeneticengineeringstrategiesforimprovedxylosemetabolisminsaccharomycescerevisiae