Cargando…
Machine learning-based predictor for neurologic outcomes in patients undergoing extracorporeal cardiopulmonary resuscitation
BACKGROUND: We investigated the predictors of poor neurological outcomes in extracorporeal cardiopulmonary resuscitation (ECPR) patients using machine learning (ML) approaches. METHODS: This study was a retrospective, single-center, observational study that included adult patients who underwent ECPR...
Autores principales: | Kim, Tae Wan, Ahn, Joonghyun, Ryu, Jeong-Am |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691482/ https://www.ncbi.nlm.nih.gov/pubmed/38045915 http://dx.doi.org/10.3389/fcvm.2023.1278374 |
Ejemplares similares
-
Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation
por: Lee, Yun Im, et al.
Publicado: (2022) -
Predictors of neurological outcomes after successful extracorporeal cardiopulmonary resuscitation
por: Ryu, Jeong-Am, et al.
Publicado: (2015) -
Optimal Arterial Blood Gas Tensions for the Prognosis of Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation
por: Hong, SungMin, et al.
Publicado: (2022) -
Perfusion parameters and target values during extracorporeal cardiopulmonary resuscitation: a scoping review protocol
por: Saemann, Lars, et al.
Publicado: (2019) -
Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation
por: Ryu, Jeong-Am, et al.
Publicado: (2017)