Cargando…
Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features
BACKGROUND: Traditional immunohistochemistry assessment of Ki-67 in breast cancer (BC) via core needle biopsy is invasive, inaccurate, and nonrepeatable. While machine learning (ML) provides a promising alternative, its effectiveness depends on extensive data. Although the current mainstream MRI-cen...
Autores principales: | Wang, Jing, Gao, Weiwei, Lu, Min, Yao, Xiaohua, Yang, Debin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691503/ https://www.ncbi.nlm.nih.gov/pubmed/38044998 http://dx.doi.org/10.3389/fonc.2023.1290313 |
Ejemplares similares
-
Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer
por: Qian, Hongwei, et al.
Publicado: (2023) -
Differentiation of malignant brain tumor types using intratumoral and peritumoral radiomic features
por: Liu, Dongming, et al.
Publicado: (2022) -
Integration of ultrasound radiomics features and clinical factors: A nomogram model for identifying the Ki-67 status in patients with breast carcinoma
por: Wu, Jiangfeng, et al.
Publicado: (2022) -
Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomic features: Peritumoral, intratumoral, or combined?
por: Chang, Runsheng, et al.
Publicado: (2022) -
Development of an ultrasound-based radiomics nomogram to preoperatively predict Ki-67 expression level in patients with breast cancer
por: Liu, Jinjin, et al.
Publicado: (2022)