Cargando…
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
Numerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the “dynamics on graphs” (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the “dynamics of graphs” (e.g., ev...
Autores principales: | Zhang, Lei, Chen, Zhiqian, Lu, Chang-Tien, Zhao, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691542/ https://www.ncbi.nlm.nih.gov/pubmed/38045094 http://dx.doi.org/10.3389/fdata.2023.1274135 |
Ejemplares similares
-
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future
por: Fu, Dongqi, et al.
Publicado: (2022) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021) -
Fast GPU-Based Generation of Large Graph Networks From Degree Distributions
por: Alam, Maksudul, et al.
Publicado: (2021) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022)