Cargando…
Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics
Rapid advances in spatial transcriptomics (ST) have revolutionized the interrogation of spatial heterogeneity and increase the demand for comprehensive methods to effectively characterize spatial domains. As a prerequisite for ST data analysis, spatial domain characterization is a crucial step for d...
Autores principales: | Li, Zhen, Chen, Xiaoyang, Zhang, Xuegong, Jiang, Rui, Chen, Shengquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691543/ https://www.ncbi.nlm.nih.gov/pubmed/37903634 http://dx.doi.org/10.1101/gr.277891.123 |
Ejemplares similares
-
stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics
por: Shengquan, Chen, et al.
Publicado: (2021) -
STmut: a framework for visualizing somatic alterations in spatial transcriptomics data of cancer
por: Chen, Limin, et al.
Publicado: (2023) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods
por: Luo, Jiaxin, et al.
Publicado: (2023) -
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023)