Cargando…
Identification of Luminal A breast cancer by using deep learning analysis based on multi-modal images
PURPOSE: To evaluate the diagnostic performance of a deep learning model based on multi-modal images in identifying molecular subtype of breast cancer. MATERIALS AND METHODS: A total of 158 breast cancer patients (170 lesions, median age, 50.8 ± 11.0 years), including 78 Luminal A subtype and 92 non...
Autores principales: | Liu, Menghan, Zhang, Shuai, Du, Yanan, Zhang, Xiaodong, Wang, Dawei, Ren, Wanqing, Sun, Jingxiang, Yang, Shiwei, Zhang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691590/ https://www.ncbi.nlm.nih.gov/pubmed/38044991 http://dx.doi.org/10.3389/fonc.2023.1243126 |
Ejemplares similares
-
Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model
por: Zhang, Xiaodong, et al.
Publicado: (2022) -
Automated diagnosis of pancreatic mucinous and serous cystic neoplasms with modality-fusion deep neural network using multi-modality MRIs
por: Zhang, Gong, et al.
Publicado: (2023) -
A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
por: Huang, He, et al.
Publicado: (2021) -
Circulating Tumor Cell Identification Based on Deep Learning
por: Guo, Zhifeng, et al.
Publicado: (2022) -
Prediction of 5-year progression-free survival in advanced nasopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep learning-based radiomics
por: Gu, Bingxin, et al.
Publicado: (2022)