Cargando…
Contrast‐enhanced MRI synthesis using dense‐dilated residual convolutions based 3D network toward elimination of gadolinium in neuro‐oncology
Recent studies have raised broad safety and health concerns about using of gadolinium contrast agents during magnetic resonance imaging (MRI) to enhance identification of active tumors. In this paper, we developed a deep learning‐based method for three‐dimensional (3D) contrast‐enhanced T1‐weighted...
Autores principales: | Osman, Alexander F. I., Tamam, Nissren M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691635/ https://www.ncbi.nlm.nih.gov/pubmed/37552487 http://dx.doi.org/10.1002/acm2.14120 |
Ejemplares similares
-
Deep learning‐based convolutional neural network for intramodality brain MRI synthesis
por: Osman, Alexander F. I., et al.
Publicado: (2022) -
Attention‐aware 3D U‐Net convolutional neural network for knowledge‐based planning 3D dose distribution prediction of head‐and‐neck cancer
por: Osman, Alexander F. I., et al.
Publicado: (2022) -
Toward deep learning replacement of gadolinium in neuro-oncology: A review of contrast-enhanced synthetic MRI
por: Moya-Sáez, Elisa, et al.
Publicado: (2023) -
Towards understanding residual and dilated dense neural networks via convolutional sparse coding
por: Zhang, Zhiyang, et al.
Publicado: (2020) -
A comparative study of deep learning‐based knowledge‐based planning methods for 3D dose distribution prediction of head and neck
por: Osman, Alexander F. I., et al.
Publicado: (2023)