Cargando…

Inductively coupled, transmit-receive coils for proton MRI and X-nucleus MRI/MRS in small animals

We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized...

Descripción completa

Detalles Bibliográficos
Autores principales: Takahashi, Atsushi M., Sharma, Jitendra, Guarin, David O., Miller, Julie, Wakimoto, Hiroaki, Cahill, Daniel P., Yen, Yi-Fen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691784/
https://www.ncbi.nlm.nih.gov/pubmed/38046795
http://dx.doi.org/10.1016/j.jmro.2023.100123
Descripción
Sumario:We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized (13) C MR spectroscopic imaging (MRSI) of mouse brain, with emphases on the simplicity of the circuit design, ease of use, whole-brain coverage, and high SNR. The simplest form was a resonant loop designed to crown the mouse head for a snug fit to achieve full coverage of the brain with high sensitivity when inductively coupled to a broadband pick-up coil. Here, we demonstrated the coil’s performance in hyperpolarized (13) C MRSI of a normal mouse and a glioblastoma mouse model at 4.7 T. High SNR exceeding 70:1 was obtained in the brain with good spatial resolution (1.53 mm × 1.53 mm). Similar inductively coupled loop for other X-nuclei can be made very easily in a few minutes and achieve high performance, as demonstrated in (31) P spectroscopy. Similar design concept was expanded to splitable, inductively coupled volume coils for high-resolution proton MRI of marmoset at 3T and 9.4T, to easily accommodate head restraint, vital-sign monitoring, and anesthesia delivery.