Cargando…

Bilateral Cochlear Implant Processing of Coding Strategies With CCi-MOBILE, an Open-Source Research Platform

While speech understanding for cochlear implant (CI) users in quiet is relatively effective, listeners experience difficulty in identification of speaker and sound location. To assist for better residual hearing abilities and speech intelligibility support, bilateral and bimodal forms of assisted he...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Ria, Hansen, John H. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691824/
https://www.ncbi.nlm.nih.gov/pubmed/38046574
http://dx.doi.org/10.1109/taslp.2023.3267608
Descripción
Sumario:While speech understanding for cochlear implant (CI) users in quiet is relatively effective, listeners experience difficulty in identification of speaker and sound location. To assist for better residual hearing abilities and speech intelligibility support, bilateral and bimodal forms of assisted hearing is becoming popular among CI users. Effective bilateral processing calls for testing precise algorithm synchronization and fitting between both left and right ear channels in order to capture interaural time and level difference cues (ITD and ILDs). This work demonstrates bilateral implant algorithm processing using a custom-made CI research platform - CCi-MOBILE, which is capable of capturing precise source localization information and supports researchers in testing bilateral CI processing in real-time naturalistic environments. Simulation-based, objective, and subjective testing has been performed to validate the accuracy of the platform. The subjective test results produced an RMS error of ±8.66° for source localization, which is comparable to the performance of commercial CI processors.