Cargando…
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
Single-cell Hi-C (scHi-C) technology enables the investigation of 3D chromatin structure variability across individual cells. However, the analysis of scHi-C data is challenged by a large number of missing values. Here, we present a scHi-C data imputation model HiC-SGL, based on Subgraph extraction...
Autores principales: | Zheng, Jiahao, Yang, Yuedong, Dai, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691963/ https://www.ncbi.nlm.nih.gov/pubmed/38040494 http://dx.doi.org/10.1093/bib/bbad379 |
Ejemplares similares
-
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases
por: Kobets, Victoria A, et al.
Publicado: (2023) -
netANOVA: novel graph clustering technique with significance assessment via hierarchical ANOVA
por: Duroux, Diane, et al.
Publicado: (2023) -
HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data
por: Wang, Jiankang, et al.
Publicado: (2021)