Cargando…
Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692044/ https://www.ncbi.nlm.nih.gov/pubmed/38038829 http://dx.doi.org/10.1186/s41747-023-00383-4 |
_version_ | 1785152856979931136 |
---|---|
author | Wesdorp, Nina J. Zeeuw, J. Michiel Postma, Sam C. J. Roor, Joran van Waesberghe, Jan Hein T. M. van den Bergh, Janneke E. Nota, Irene M. Moos, Shira Kemna, Ruby Vadakkumpadan, Fijoy Ambrozic, Courtney van Dieren, Susan van Amerongen, Martinus J. Chapelle, Thiery Engelbrecht, Marc R. W. Gerhards, Michael F. Grunhagen, Dirk van Gulik, Thomas M. Hermans, John J. de Jong, Koert P. Klaase, Joost M. Liem, Mike S. L. van Lienden, Krijn P. Molenaar, I. Quintus Patijn, Gijs A. Rijken, Arjen M. Ruers, Theo M. Verhoef, Cornelis de Wilt, Johannes H. W. Marquering, Henk A. Stoker, Jaap Swijnenburg, Rutger-Jan Punt, Cornelis J. A. Huiskens, Joost Kazemier, Geert |
author_facet | Wesdorp, Nina J. Zeeuw, J. Michiel Postma, Sam C. J. Roor, Joran van Waesberghe, Jan Hein T. M. van den Bergh, Janneke E. Nota, Irene M. Moos, Shira Kemna, Ruby Vadakkumpadan, Fijoy Ambrozic, Courtney van Dieren, Susan van Amerongen, Martinus J. Chapelle, Thiery Engelbrecht, Marc R. W. Gerhards, Michael F. Grunhagen, Dirk van Gulik, Thomas M. Hermans, John J. de Jong, Koert P. Klaase, Joost M. Liem, Mike S. L. van Lienden, Krijn P. Molenaar, I. Quintus Patijn, Gijs A. Rijken, Arjen M. Ruers, Theo M. Verhoef, Cornelis de Wilt, Johannes H. W. Marquering, Henk A. Stoker, Jaap Swijnenburg, Rutger-Jan Punt, Cornelis J. A. Huiskens, Joost Kazemier, Geert |
author_sort | Wesdorp, Nina J. |
collection | PubMed |
description | BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially unresectable CRLM of the CAIRO5 trial (NCT02162563) were included. In total, 595 CT scans comprising 8,959 CRLM were divided into training (73%), validation (6.5%), and test sets (21%). Deep learning models were trained with ground truth segmentations of the liver and CRLM. TTV was calculated based on the CRLM segmentations. An external validation cohort was included, comprising 72 preoperative CT scans of patients with 112 resectable CRLM. Image segmentation evaluation metrics and intraclass correlation coefficient (ICC) were calculated. RESULTS: In the test set (122 CT scans), the autosegmentation models showed a global Dice similarity coefficient (DSC) of 0.96 (liver) and 0.86 (CRLM). The corresponding median per-case DSC was 0.96 (interquartile range [IQR] 0.95–0.96) and 0.80 (IQR 0.67–0.87). For tumor segmentation, the intersection-over-union, precision, and recall were 0.75, 0.89, and 0.84, respectively. An excellent agreement was observed between the reference and automatically computed TTV for the test set (ICC 0.98) and external validation cohort (ICC 0.98). In the external validation, the global DSC was 0.82 and the median per-case DSC was 0.60 (IQR 0.29–0.76) for tumor segmentation. CONCLUSIONS: Deep learning autosegmentation models were able to segment the liver and CRLM automatically and accurately in patients with initially unresectable CRLM, enabling automatic TTV assessment in such patients. RELEVANCE STATEMENT: Automatic segmentation enables the assessment of total tumor volume in patients with colorectal liver metastases, with a high potential of decreasing radiologist’s workload and increasing accuracy and consistency. KEY POINTS: • Tumor response evaluation is time-consuming, manually performed, and ignores total tumor volume. • Automatic models can accurately segment tumors in patients with colorectal liver metastases. • Total tumor volume can be accurately calculated based on automatic segmentations. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00383-4. |
format | Online Article Text |
id | pubmed-10692044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-106920442023-12-03 Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases Wesdorp, Nina J. Zeeuw, J. Michiel Postma, Sam C. J. Roor, Joran van Waesberghe, Jan Hein T. M. van den Bergh, Janneke E. Nota, Irene M. Moos, Shira Kemna, Ruby Vadakkumpadan, Fijoy Ambrozic, Courtney van Dieren, Susan van Amerongen, Martinus J. Chapelle, Thiery Engelbrecht, Marc R. W. Gerhards, Michael F. Grunhagen, Dirk van Gulik, Thomas M. Hermans, John J. de Jong, Koert P. Klaase, Joost M. Liem, Mike S. L. van Lienden, Krijn P. Molenaar, I. Quintus Patijn, Gijs A. Rijken, Arjen M. Ruers, Theo M. Verhoef, Cornelis de Wilt, Johannes H. W. Marquering, Henk A. Stoker, Jaap Swijnenburg, Rutger-Jan Punt, Cornelis J. A. Huiskens, Joost Kazemier, Geert Eur Radiol Exp Original Article BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially unresectable CRLM of the CAIRO5 trial (NCT02162563) were included. In total, 595 CT scans comprising 8,959 CRLM were divided into training (73%), validation (6.5%), and test sets (21%). Deep learning models were trained with ground truth segmentations of the liver and CRLM. TTV was calculated based on the CRLM segmentations. An external validation cohort was included, comprising 72 preoperative CT scans of patients with 112 resectable CRLM. Image segmentation evaluation metrics and intraclass correlation coefficient (ICC) were calculated. RESULTS: In the test set (122 CT scans), the autosegmentation models showed a global Dice similarity coefficient (DSC) of 0.96 (liver) and 0.86 (CRLM). The corresponding median per-case DSC was 0.96 (interquartile range [IQR] 0.95–0.96) and 0.80 (IQR 0.67–0.87). For tumor segmentation, the intersection-over-union, precision, and recall were 0.75, 0.89, and 0.84, respectively. An excellent agreement was observed between the reference and automatically computed TTV for the test set (ICC 0.98) and external validation cohort (ICC 0.98). In the external validation, the global DSC was 0.82 and the median per-case DSC was 0.60 (IQR 0.29–0.76) for tumor segmentation. CONCLUSIONS: Deep learning autosegmentation models were able to segment the liver and CRLM automatically and accurately in patients with initially unresectable CRLM, enabling automatic TTV assessment in such patients. RELEVANCE STATEMENT: Automatic segmentation enables the assessment of total tumor volume in patients with colorectal liver metastases, with a high potential of decreasing radiologist’s workload and increasing accuracy and consistency. KEY POINTS: • Tumor response evaluation is time-consuming, manually performed, and ignores total tumor volume. • Automatic models can accurately segment tumors in patients with colorectal liver metastases. • Total tumor volume can be accurately calculated based on automatic segmentations. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00383-4. Springer Vienna 2023-12-01 /pmc/articles/PMC10692044/ /pubmed/38038829 http://dx.doi.org/10.1186/s41747-023-00383-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Wesdorp, Nina J. Zeeuw, J. Michiel Postma, Sam C. J. Roor, Joran van Waesberghe, Jan Hein T. M. van den Bergh, Janneke E. Nota, Irene M. Moos, Shira Kemna, Ruby Vadakkumpadan, Fijoy Ambrozic, Courtney van Dieren, Susan van Amerongen, Martinus J. Chapelle, Thiery Engelbrecht, Marc R. W. Gerhards, Michael F. Grunhagen, Dirk van Gulik, Thomas M. Hermans, John J. de Jong, Koert P. Klaase, Joost M. Liem, Mike S. L. van Lienden, Krijn P. Molenaar, I. Quintus Patijn, Gijs A. Rijken, Arjen M. Ruers, Theo M. Verhoef, Cornelis de Wilt, Johannes H. W. Marquering, Henk A. Stoker, Jaap Swijnenburg, Rutger-Jan Punt, Cornelis J. A. Huiskens, Joost Kazemier, Geert Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title | Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title_full | Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title_fullStr | Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title_full_unstemmed | Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title_short | Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
title_sort | deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692044/ https://www.ncbi.nlm.nih.gov/pubmed/38038829 http://dx.doi.org/10.1186/s41747-023-00383-4 |
work_keys_str_mv | AT wesdorpninaj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT zeeuwjmichiel deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT postmasamcj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT roorjoran deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vanwaesberghejanheintm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vandenberghjannekee deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT notairenem deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT moosshira deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT kemnaruby deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vadakkumpadanfijoy deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT ambroziccourtney deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vandierensusan deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vanamerongenmartinusj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT chapellethiery deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT engelbrechtmarcrw deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT gerhardsmichaelf deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT grunhagendirk deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vangulikthomasm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT hermansjohnj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT dejongkoertp deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT klaasejoostm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT liemmikesl deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT vanliendenkrijnp deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT molenaariquintus deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT patijngijsa deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT rijkenarjenm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT ruerstheom deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT verhoefcornelis deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT dewiltjohanneshw deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT marqueringhenka deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT stokerjaap deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT swijnenburgrutgerjan deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT puntcornelisja deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT huiskensjoost deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases AT kazemiergeert deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases |