Cargando…

Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases

BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially...

Descripción completa

Detalles Bibliográficos
Autores principales: Wesdorp, Nina J., Zeeuw, J. Michiel, Postma, Sam C. J., Roor, Joran, van Waesberghe, Jan Hein T. M., van den Bergh, Janneke E., Nota, Irene M., Moos, Shira, Kemna, Ruby, Vadakkumpadan, Fijoy, Ambrozic, Courtney, van Dieren, Susan, van Amerongen, Martinus J., Chapelle, Thiery, Engelbrecht, Marc R. W., Gerhards, Michael F., Grunhagen, Dirk, van Gulik, Thomas M., Hermans, John J., de Jong, Koert P., Klaase, Joost M., Liem, Mike S. L., van Lienden, Krijn P., Molenaar, I. Quintus, Patijn, Gijs A., Rijken, Arjen M., Ruers, Theo M., Verhoef, Cornelis, de Wilt, Johannes H. W., Marquering, Henk A., Stoker, Jaap, Swijnenburg, Rutger-Jan, Punt, Cornelis J. A., Huiskens, Joost, Kazemier, Geert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692044/
https://www.ncbi.nlm.nih.gov/pubmed/38038829
http://dx.doi.org/10.1186/s41747-023-00383-4
_version_ 1785152856979931136
author Wesdorp, Nina J.
Zeeuw, J. Michiel
Postma, Sam C. J.
Roor, Joran
van Waesberghe, Jan Hein T. M.
van den Bergh, Janneke E.
Nota, Irene M.
Moos, Shira
Kemna, Ruby
Vadakkumpadan, Fijoy
Ambrozic, Courtney
van Dieren, Susan
van Amerongen, Martinus J.
Chapelle, Thiery
Engelbrecht, Marc R. W.
Gerhards, Michael F.
Grunhagen, Dirk
van Gulik, Thomas M.
Hermans, John J.
de Jong, Koert P.
Klaase, Joost M.
Liem, Mike S. L.
van Lienden, Krijn P.
Molenaar, I. Quintus
Patijn, Gijs A.
Rijken, Arjen M.
Ruers, Theo M.
Verhoef, Cornelis
de Wilt, Johannes H. W.
Marquering, Henk A.
Stoker, Jaap
Swijnenburg, Rutger-Jan
Punt, Cornelis J. A.
Huiskens, Joost
Kazemier, Geert
author_facet Wesdorp, Nina J.
Zeeuw, J. Michiel
Postma, Sam C. J.
Roor, Joran
van Waesberghe, Jan Hein T. M.
van den Bergh, Janneke E.
Nota, Irene M.
Moos, Shira
Kemna, Ruby
Vadakkumpadan, Fijoy
Ambrozic, Courtney
van Dieren, Susan
van Amerongen, Martinus J.
Chapelle, Thiery
Engelbrecht, Marc R. W.
Gerhards, Michael F.
Grunhagen, Dirk
van Gulik, Thomas M.
Hermans, John J.
de Jong, Koert P.
Klaase, Joost M.
Liem, Mike S. L.
van Lienden, Krijn P.
Molenaar, I. Quintus
Patijn, Gijs A.
Rijken, Arjen M.
Ruers, Theo M.
Verhoef, Cornelis
de Wilt, Johannes H. W.
Marquering, Henk A.
Stoker, Jaap
Swijnenburg, Rutger-Jan
Punt, Cornelis J. A.
Huiskens, Joost
Kazemier, Geert
author_sort Wesdorp, Nina J.
collection PubMed
description BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially unresectable CRLM of the CAIRO5 trial (NCT02162563) were included. In total, 595 CT scans comprising 8,959 CRLM were divided into training (73%), validation (6.5%), and test sets (21%). Deep learning models were trained with ground truth segmentations of the liver and CRLM. TTV was calculated based on the CRLM segmentations. An external validation cohort was included, comprising 72 preoperative CT scans of patients with 112 resectable CRLM. Image segmentation evaluation metrics and intraclass correlation coefficient (ICC) were calculated. RESULTS: In the test set (122 CT scans), the autosegmentation models showed a global Dice similarity coefficient (DSC) of 0.96 (liver) and 0.86 (CRLM). The corresponding median per-case DSC was 0.96 (interquartile range [IQR] 0.95–0.96) and 0.80 (IQR 0.67–0.87). For tumor segmentation, the intersection-over-union, precision, and recall were 0.75, 0.89, and 0.84, respectively. An excellent agreement was observed between the reference and automatically computed TTV for the test set (ICC 0.98) and external validation cohort (ICC 0.98). In the external validation, the global DSC was 0.82 and the median per-case DSC was 0.60 (IQR 0.29–0.76) for tumor segmentation. CONCLUSIONS: Deep learning autosegmentation models were able to segment the liver and CRLM automatically and accurately in patients with initially unresectable CRLM, enabling automatic TTV assessment in such patients. RELEVANCE STATEMENT: Automatic segmentation enables the assessment of total tumor volume in patients with colorectal liver metastases, with a high potential of decreasing radiologist’s workload and increasing accuracy and consistency. KEY POINTS: • Tumor response evaluation is time-consuming, manually performed, and ignores total tumor volume. • Automatic models can accurately segment tumors in patients with colorectal liver metastases. • Total tumor volume can be accurately calculated based on automatic segmentations. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00383-4.
format Online
Article
Text
id pubmed-10692044
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-106920442023-12-03 Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases Wesdorp, Nina J. Zeeuw, J. Michiel Postma, Sam C. J. Roor, Joran van Waesberghe, Jan Hein T. M. van den Bergh, Janneke E. Nota, Irene M. Moos, Shira Kemna, Ruby Vadakkumpadan, Fijoy Ambrozic, Courtney van Dieren, Susan van Amerongen, Martinus J. Chapelle, Thiery Engelbrecht, Marc R. W. Gerhards, Michael F. Grunhagen, Dirk van Gulik, Thomas M. Hermans, John J. de Jong, Koert P. Klaase, Joost M. Liem, Mike S. L. van Lienden, Krijn P. Molenaar, I. Quintus Patijn, Gijs A. Rijken, Arjen M. Ruers, Theo M. Verhoef, Cornelis de Wilt, Johannes H. W. Marquering, Henk A. Stoker, Jaap Swijnenburg, Rutger-Jan Punt, Cornelis J. A. Huiskens, Joost Kazemier, Geert Eur Radiol Exp Original Article BACKGROUND: We developed models for tumor segmentation to automate the assessment of total tumor volume (TTV) in patients with colorectal liver metastases (CRLM). METHODS: In this prospective cohort study, pre- and post-systemic treatment computed tomography (CT) scans of 259 patients with initially unresectable CRLM of the CAIRO5 trial (NCT02162563) were included. In total, 595 CT scans comprising 8,959 CRLM were divided into training (73%), validation (6.5%), and test sets (21%). Deep learning models were trained with ground truth segmentations of the liver and CRLM. TTV was calculated based on the CRLM segmentations. An external validation cohort was included, comprising 72 preoperative CT scans of patients with 112 resectable CRLM. Image segmentation evaluation metrics and intraclass correlation coefficient (ICC) were calculated. RESULTS: In the test set (122 CT scans), the autosegmentation models showed a global Dice similarity coefficient (DSC) of 0.96 (liver) and 0.86 (CRLM). The corresponding median per-case DSC was 0.96 (interquartile range [IQR] 0.95–0.96) and 0.80 (IQR 0.67–0.87). For tumor segmentation, the intersection-over-union, precision, and recall were 0.75, 0.89, and 0.84, respectively. An excellent agreement was observed between the reference and automatically computed TTV for the test set (ICC 0.98) and external validation cohort (ICC 0.98). In the external validation, the global DSC was 0.82 and the median per-case DSC was 0.60 (IQR 0.29–0.76) for tumor segmentation. CONCLUSIONS: Deep learning autosegmentation models were able to segment the liver and CRLM automatically and accurately in patients with initially unresectable CRLM, enabling automatic TTV assessment in such patients. RELEVANCE STATEMENT: Automatic segmentation enables the assessment of total tumor volume in patients with colorectal liver metastases, with a high potential of decreasing radiologist’s workload and increasing accuracy and consistency. KEY POINTS: • Tumor response evaluation is time-consuming, manually performed, and ignores total tumor volume. • Automatic models can accurately segment tumors in patients with colorectal liver metastases. • Total tumor volume can be accurately calculated based on automatic segmentations. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00383-4. Springer Vienna 2023-12-01 /pmc/articles/PMC10692044/ /pubmed/38038829 http://dx.doi.org/10.1186/s41747-023-00383-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Wesdorp, Nina J.
Zeeuw, J. Michiel
Postma, Sam C. J.
Roor, Joran
van Waesberghe, Jan Hein T. M.
van den Bergh, Janneke E.
Nota, Irene M.
Moos, Shira
Kemna, Ruby
Vadakkumpadan, Fijoy
Ambrozic, Courtney
van Dieren, Susan
van Amerongen, Martinus J.
Chapelle, Thiery
Engelbrecht, Marc R. W.
Gerhards, Michael F.
Grunhagen, Dirk
van Gulik, Thomas M.
Hermans, John J.
de Jong, Koert P.
Klaase, Joost M.
Liem, Mike S. L.
van Lienden, Krijn P.
Molenaar, I. Quintus
Patijn, Gijs A.
Rijken, Arjen M.
Ruers, Theo M.
Verhoef, Cornelis
de Wilt, Johannes H. W.
Marquering, Henk A.
Stoker, Jaap
Swijnenburg, Rutger-Jan
Punt, Cornelis J. A.
Huiskens, Joost
Kazemier, Geert
Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title_full Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title_fullStr Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title_full_unstemmed Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title_short Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
title_sort deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692044/
https://www.ncbi.nlm.nih.gov/pubmed/38038829
http://dx.doi.org/10.1186/s41747-023-00383-4
work_keys_str_mv AT wesdorpninaj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT zeeuwjmichiel deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT postmasamcj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT roorjoran deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vanwaesberghejanheintm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vandenberghjannekee deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT notairenem deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT moosshira deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT kemnaruby deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vadakkumpadanfijoy deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT ambroziccourtney deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vandierensusan deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vanamerongenmartinusj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT chapellethiery deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT engelbrechtmarcrw deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT gerhardsmichaelf deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT grunhagendirk deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vangulikthomasm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT hermansjohnj deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT dejongkoertp deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT klaasejoostm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT liemmikesl deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT vanliendenkrijnp deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT molenaariquintus deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT patijngijsa deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT rijkenarjenm deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT ruerstheom deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT verhoefcornelis deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT dewiltjohanneshw deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT marqueringhenka deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT stokerjaap deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT swijnenburgrutgerjan deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT puntcornelisja deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT huiskensjoost deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases
AT kazemiergeert deeplearningmodelsforautomatictumorsegmentationandtotaltumorvolumeassessmentinpatientswithcolorectallivermetastases