Cargando…

Mechanisms of Wharton’s Jelly-derived MSCs in enhancing peripheral nerve regeneration

Warton’s jelly-derived Mesenchymal stem cells (WJ-MSCs) play key roles in improving nerve regeneration in acellular nerve grafts (ANGs); however, the mechanism of WJ-MSCs-related nerve regeneration remains unclear. This study investigated how WJ-MSCs contribute to peripheral nerve regeneration by ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Young Ho, Choi, Soon Jin, Kim, Jae Kwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692106/
https://www.ncbi.nlm.nih.gov/pubmed/38040829
http://dx.doi.org/10.1038/s41598-023-48495-6
Descripción
Sumario:Warton’s jelly-derived Mesenchymal stem cells (WJ-MSCs) play key roles in improving nerve regeneration in acellular nerve grafts (ANGs); however, the mechanism of WJ-MSCs-related nerve regeneration remains unclear. This study investigated how WJ-MSCs contribute to peripheral nerve regeneration by examining immunomodulatory and paracrine effects, and differentiation potential. To this end, WJ-MSCs were isolated from umbilical cords, and ANGs (control) or WJ-MSCs-loaded ANGs (WJ-MSCs group) were transplanted in injury animal model. Functional recovery was evaluated by ankle angle and tetanic force measurements up to 16 weeks post-surgery. Tissue biopsies at 3, 7, and 14 days post-transplantation were used to analyze macrophage markers and interleukin (IL) levels, paracrine effects, and MSC differentiation potential by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The WJ-MSCs group showed significantly higher ankle angle at 4 weeks and higher isometric tetanic force at 16 weeks, and increased expression of CD206 and IL10 at 7 or 14 days than the control group. Increased levels of neurotrophic and vascular growth factors were observed at 14 days. The WJ-MSCs group showed higher expression levels of S100β; however, the co-staining of human nuclei was faint. This study demonstrates that WJ-MSCs' immunomodulation and paracrine actions contribute to peripheral nerve regeneration more than their differentiation potential.