Cargando…
A machine learning and directed network optimization approach to uncover TP53 regulatory patterns
TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53from transcriptomic data, and directed regulat...
Autores principales: | Triantafyllidis, Charalampos P., Barberis, Alessandro, Hartley, Fiona, Cuervo, Ana Miar, Gjerga, Enio, Charlton, Philip, van Bijsterveldt, Linda, Rodriguez, Julio Saez, Buffa, Francesca M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692668/ https://www.ncbi.nlm.nih.gov/pubmed/38047081 http://dx.doi.org/10.1016/j.isci.2023.108291 |
Ejemplares similares
-
From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL
por: Liu, Anika, et al.
Publicado: (2019) -
TP53_PROF: a machine learning model to predict impact of missense mutations in TP53
por: Ben-Cohen, Gil, et al.
Publicado: (2022) -
Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic
por: Verfaillie, Annelien, et al.
Publicado: (2016) -
TP53 and its Regulatory Genes as Prognosis of Cutaneous Melanoma
por: Khan, Safir Ullah, et al.
Publicado: (2023) -
Mitigating the Risk of t-MNs Development: TP53 or Not TP53?
por: Tesio, Melania
Publicado: (2023)