Cargando…

Mortality among papillary thyroid cancer patients by detection route: a hospital-based retrospective cohort study

BACKGROUND: Incidence rates of papillary thyroid cancer (PTC) have increased rapidly, with incidentally detected cancers contributing a large proportion. We aimed to explore the impact of incidental detection on thyroid cancer-specific and competing mortality among PTC patients. METHODS: We conducte...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Lan, Vaccarella, Salvatore, Feng, Chen-Yang, Dal Maso, Luigino, Chen, Yu, Liu, Wei-Wei, Liang, Miao-Bian, Zhang, Zike, Yang, Jun, Cao, Su-Mei, Li, Mengmeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692677/
https://www.ncbi.nlm.nih.gov/pubmed/37855414
http://dx.doi.org/10.1530/ETJ-23-0127
Descripción
Sumario:BACKGROUND: Incidence rates of papillary thyroid cancer (PTC) have increased rapidly, with incidentally detected cancers contributing a large proportion. We aimed to explore the impact of incidental detection on thyroid cancer-specific and competing mortality among PTC patients. METHODS: We conducted a retrospective cohort study of PTC patients at a cancer center in Guangzhou. Baseline information on detection route and other covariates were collected between 2010 and 2018, and death outcome was followed up for each patient. Cumulative incidence functions were used to estimate the mortality risk of thyroid cancer and competing risk. Cause-specific hazard models were then utilized to explore the association between detection routes and PTC-specific and competing mortality. RESULTS: Of the 2874 patients included, 2011 (70.0%) were detected incidentally, and the proportion increased from 36.9% in 2011 to 82.3% in 2018. During a median follow-up of 5.6 years, 42 deaths occurred, with 60% of them due to competing causes. The probability of competing mortality at 5 years in the non-incidental group and incidental group was 1.4% and 0.4%, respectively, and PTC-specific mortality in the non-incidental group and incidental group was 1.0% and 0.1%, respectively. After adjusting for covariates, the HRs of incidental detection were 0.13 (95% CI: 0.04–0.46; P = 0.01) and 0.47 (95% CI: 0.20–1.10; P = 0.10) on PTC-specific mortality and competing mortality, respectively. CONCLUSIONS: Incidental detection is associated with a lower risk of PTC-specific and competing mortality. Under the context of increasing magnitude of overdiagnosis, incorporation of detection route in clinical decision-making might be helpful to identify patients who might benefit from more extensive or conservative therapeutic strategies.