Cargando…
Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition
The hydrothermal dewatering (HTD) process was carried out using 16 coal samples obtained from several regions in Indonesia. This research aims to identify the dominant parameters that influence ash deposition during coal combustion in a boiler or gasifier due to the HTD process. This research was co...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692783/ https://www.ncbi.nlm.nih.gov/pubmed/38045174 http://dx.doi.org/10.1016/j.heliyon.2023.e22022 |
_version_ | 1785153016797593600 |
---|---|
author | Umar, Datin Fatia Zulfahmi, Zulfahmi Suseno, Triswan Suganal, Suganal Madiutomo, Nendaryono Setiawan, Liston Daranin, Edwin Akhdiat Gunawan, Gunawan |
author_facet | Umar, Datin Fatia Zulfahmi, Zulfahmi Suseno, Triswan Suganal, Suganal Madiutomo, Nendaryono Setiawan, Liston Daranin, Edwin Akhdiat Gunawan, Gunawan |
author_sort | Umar, Datin Fatia |
collection | PubMed |
description | The hydrothermal dewatering (HTD) process was carried out using 16 coal samples obtained from several regions in Indonesia. This research aims to identify the dominant parameters that influence ash deposition during coal combustion in a boiler or gasifier due to the HTD process. This research was conducted due to the lack of clear and comprehensive information regarding this issue. Therefore, to understand the effect of HTD on ash deposition, an analysis of the chemical composition of ash and the ash melting temperature (AFT) was carried out. To verify the data obtained from the experimental analysis, statistical methods such as paired sample t-test and primary component analysis were applied to obtain the dominant parameters influencing ash deposition due to HTD. Eight parameters, namely SiO(2), Fe(2)O(3), slagging viscosity index (SR), Babcock index (Rs), initial deformation temperature, softening temperature, hemispherical temperature, and fluid temperature under oxidative conditions, have the greatest influence on ash deposition due to the HTD process. Based on the average values of SR and Rs, raw coal and processed coal samples have the same ash deposition trend. On the other hand, based on AFT under oxidation conditions, processed coal has a higher AFT, indicating that the tendency for ash deposition is lower than raw coal. Therefore, the HTD process can be used to improve the quality of low-grade coal. As an implication, low-grade coal, which has not been widely utilized in Indonesia, due to several constraints regarding its characteristics, through the HTD process can be optimized where coal utilization is a bridge towards the use of green energy which is being intensively pursued. |
format | Online Article Text |
id | pubmed-10692783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106927832023-12-03 Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition Umar, Datin Fatia Zulfahmi, Zulfahmi Suseno, Triswan Suganal, Suganal Madiutomo, Nendaryono Setiawan, Liston Daranin, Edwin Akhdiat Gunawan, Gunawan Heliyon Research Article The hydrothermal dewatering (HTD) process was carried out using 16 coal samples obtained from several regions in Indonesia. This research aims to identify the dominant parameters that influence ash deposition during coal combustion in a boiler or gasifier due to the HTD process. This research was conducted due to the lack of clear and comprehensive information regarding this issue. Therefore, to understand the effect of HTD on ash deposition, an analysis of the chemical composition of ash and the ash melting temperature (AFT) was carried out. To verify the data obtained from the experimental analysis, statistical methods such as paired sample t-test and primary component analysis were applied to obtain the dominant parameters influencing ash deposition due to HTD. Eight parameters, namely SiO(2), Fe(2)O(3), slagging viscosity index (SR), Babcock index (Rs), initial deformation temperature, softening temperature, hemispherical temperature, and fluid temperature under oxidative conditions, have the greatest influence on ash deposition due to the HTD process. Based on the average values of SR and Rs, raw coal and processed coal samples have the same ash deposition trend. On the other hand, based on AFT under oxidation conditions, processed coal has a higher AFT, indicating that the tendency for ash deposition is lower than raw coal. Therefore, the HTD process can be used to improve the quality of low-grade coal. As an implication, low-grade coal, which has not been widely utilized in Indonesia, due to several constraints regarding its characteristics, through the HTD process can be optimized where coal utilization is a bridge towards the use of green energy which is being intensively pursued. Elsevier 2023-11-09 /pmc/articles/PMC10692783/ /pubmed/38045174 http://dx.doi.org/10.1016/j.heliyon.2023.e22022 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Umar, Datin Fatia Zulfahmi, Zulfahmi Suseno, Triswan Suganal, Suganal Madiutomo, Nendaryono Setiawan, Liston Daranin, Edwin Akhdiat Gunawan, Gunawan Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title | Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title_full | Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title_fullStr | Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title_full_unstemmed | Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title_short | Hydrothermal dewatering of low-grade coal: Product evaluation and primary component analysis of ash deposition |
title_sort | hydrothermal dewatering of low-grade coal: product evaluation and primary component analysis of ash deposition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692783/ https://www.ncbi.nlm.nih.gov/pubmed/38045174 http://dx.doi.org/10.1016/j.heliyon.2023.e22022 |
work_keys_str_mv | AT umardatinfatia hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT zulfahmizulfahmi hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT susenotriswan hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT suganalsuganal hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT madiutomonendaryono hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT setiawanliston hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT daraninedwinakhdiat hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition AT gunawangunawan hydrothermaldewateringoflowgradecoalproductevaluationandprimarycomponentanalysisofashdeposition |