Cargando…
Sickle cell disease classification using deep learning
This paper presents a transfer and deep learning based approach to the classification of Sickle Cell Disease (SCD). Five transfer learning models such as ResNet-50, AlexNet, MobileNet, VGG-16 and VGG-19, and a sequential convolutional neural network (CNN) have been implemented for SCD classification...
Autores principales: | Jennifer, Sanjeda Sara, Shamim, Mahbub Hasan, Reza, Ahmed Wasif, Siddique, Nazmul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692811/ https://www.ncbi.nlm.nih.gov/pubmed/38045118 http://dx.doi.org/10.1016/j.heliyon.2023.e22203 |
Ejemplares similares
-
Mixed-Input Deep Learning Approach to Sleep/Wake State Classification by Using EEG Signals
por: Hasan, Md. Nazmul, et al.
Publicado: (2023) -
Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin
por: Praljak, Niksa, et al.
Publicado: (2021) -
Classification of Arrhythmia in Heartbeat Detection Using Deep Learning
por: Ullah, Wusat, et al.
Publicado: (2021) -
Biophysical Profiling of Sickle Cell Disease Using Holographic Cytometry and Deep Learning
por: Chen, Cindy X., et al.
Publicado: (2023) -
Classification of Citrus Diseases Using Optimization Deep Learning Approach
por: Elaraby, Ahmed, et al.
Publicado: (2022)