Cargando…
Using machine learning to enhance prediction of atrial fibrillation recurrence after catheter ablation
BACKGROUND: Traditional risk scores for recurrent atrial fibrillation (AF) following catheter ablation utilize readily available clinical and echocardiographic variables and yet have limited discriminatory capacity. Use of data from cardiac imaging and deep learning may help improve accuracy and pre...
Autores principales: | Brahier, Mark S., Zou, Fengwei, Abdulkareem, Musa, Kochi, Shwetha, Migliarese, Frank, Thomaides, Athanasios, Ma, Xiaoyang, Wu, Colin, Sandfort, Veit, Bergquist, Peter J., Srichai, Monvadi B., Piccini, Jonathan P., Petersen, Steffen E., Vargas, Jose D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692862/ https://www.ncbi.nlm.nih.gov/pubmed/38045451 http://dx.doi.org/10.1002/joa3.12927 |
Ejemplares similares
-
Generalizable Framework for Atrial Volume Estimation for Cardiac CT Images Using Deep Learning With Quality Control Assessment
por: Abdulkareem, Musa, et al.
Publicado: (2022) -
Catheter Ablation for Atrial Fibrillation
por: Gauri, Andre J, et al.
Publicado: (2003) -
Diagnosis-to-ablation time predicts recurrent atrial fibrillation and rehospitalization following catheter ablation
por: Chew, Derek S., et al.
Publicado: (2021) -
Catheter ablation of atrial fibrillation in patients with diabetes mellitus
por: Wang, Allen, et al.
Publicado: (2020) -
Comparative Safety and Effectiveness of Sotalol Versus Dronedarone After Catheter Ablation for Atrial Fibrillation
por: Wharton, John Marcus, et al.
Publicado: (2022)