Cargando…
Optimised feature selection-driven convolutional neural network using gray level co-occurrence matrix for detection of cervical cancer
Cervical cancer is one of the most dangerous and widespread illnesses afflicting women throughout the globe, particularly in East Africa and South Asia. In industrialised nations, the incidence of cervical cancer has consistently decreased over the past few decades. However, in developing countries,...
Autores principales: | Sudhakar, K., Saravanan, D., Hariharan, G., Sanaj, M. S., Kumar, Santosh, Shaik, Maznu, Gonzales, Jose Luis Arias, Aurangzeb, Khursheed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693012/ https://www.ncbi.nlm.nih.gov/pubmed/38045489 http://dx.doi.org/10.1515/biol-2022-0770 |
Ejemplares similares
-
A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images
por: Iqbal, Saeed, et al.
Publicado: (2023) -
Gray level co-occurrence matrix and extreme learning machine for Covid-19 diagnosis
por: Pi, Pengpeng, et al.
Publicado: (2021) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023) -
Analysis of gear surface morphology based on gray level co-occurrence matrix and fractal dimension
por: Wei, Bo, et al.
Publicado: (2019) -
A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis
por: Aurangzeb, Khursheed
Publicado: (2023)