Cargando…
Prediction of the number of asthma patients using environmental factors based on deep learning algorithms
BACKGROUND: Air pollution, weather, pollen, and influenza are typical aggravating factors for asthma. Previous studies have identified risk factors using regression-based and ensemble models. However, studies that consider complex relationships and interactions among these factors have yet to be con...
Autores principales: | Hwang, Hyemin, Jang, Jae-Hyuk, Lee, Eunyoung, Park, Hae-Sim, Lee, Jae Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693131/ https://www.ncbi.nlm.nih.gov/pubmed/38041105 http://dx.doi.org/10.1186/s12931-023-02616-x |
Ejemplares similares
-
Epithelial Autoantigen-Specific IgG Antibody Enhances Eosinophil Extracellular Trap Formation in Severe Asthma
por: Lee, Dong-Hyun, et al.
Publicado: (2022) -
Evaluation of roadside air quality using deep learning models after the application of the diesel vehicle policy (Euro 6)
por: Hwang, Hyemin, et al.
Publicado: (2022) -
Changes in Type 2 Biomarkers After Anti-IL5 Treatment in Patients With Severe Eosinophilic Asthma
por: Jang, Jae-Hyuk, et al.
Publicado: (2020) -
Prediction of osteoporosis from simple hip radiography using deep learning algorithm
por: Jang, Ryoungwoo, et al.
Publicado: (2021) -
Increasing Prevalence and Mortality of Asthma With Age in Korea, 2002–2015: A Nationwide, Population-Based Study
por: Lee, Eunyoung, et al.
Publicado: (2020)