Cargando…
Clinico-biological-radiomics (CBR) based machine learning for improving the diagnostic accuracy of FDG-PET false-positive lymph nodes in lung cancer
BACKGROUND: The main problem of positron emission tomography/computed tomography (PET/CT) for lymph node (LN) staging is the high false positive rate (FPR). Thus, we aimed to explore a clinico-biological-radiomics (CBR) model via machine learning (ML) to reduce FPR and improve the accuracy for predi...
Autores principales: | Ren, Caiyue, Zhang, Fuquan, Zhang, Jiangang, Song, Shaoli, Sun, Yun, Cheng, Jingyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693151/ https://www.ncbi.nlm.nih.gov/pubmed/38042812 http://dx.doi.org/10.1186/s40001-023-01497-6 |
Ejemplares similares
-
Machine learning based on clinico-biological features integrated (18)F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung
por: Ren, Caiyue, et al.
Publicado: (2020) -
Classification of solid pulmonary nodules using a machine-learning nomogram based on (18)F-FDG PET/CT radiomics integrated clinicobiological features
por: Ren, Caiyue, et al.
Publicado: (2022) -
Development of High-Resolution Dedicated PET-Based Radiomics Machine Learning Model to Predict Axillary Lymph Node Status in Early-Stage Breast Cancer
por: Cheng, Jingyi, et al.
Publicado: (2022) -
(18)F-FDG PET/CT Radiomics for Preoperative Prediction of Lymph Node Metastases and Nodal Staging in Gastric Cancer
por: Liu, Qiufang, et al.
Publicado: (2021) -
Implications of False Negative and False Positive Diagnosis in Lymph Node Staging of NSCLC by Means of (18)F-FDG PET/CT
por: Li, Shaolei, et al.
Publicado: (2013)