Cargando…
Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition
OBJECTIVE: The objective of this study was to evaluate the effectiveness of deep learning methods in detecting dental caries from radiographic images. METHODS: A total of 771 bitewing radiographs were divided into two groups: adult (n = 554) and pediatric (n = 217). Two distinct semantic segmentatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693222/ https://www.ncbi.nlm.nih.gov/pubmed/38047163 http://dx.doi.org/10.1177/20552076231216681 |
_version_ | 1785153114433650688 |
---|---|
author | Azhari, Amr Ahmed Helal, Narmin Sabri, Leena M Abduljawad, Abeer |
author_facet | Azhari, Amr Ahmed Helal, Narmin Sabri, Leena M Abduljawad, Abeer |
author_sort | Azhari, Amr Ahmed |
collection | PubMed |
description | OBJECTIVE: The objective of this study was to evaluate the effectiveness of deep learning methods in detecting dental caries from radiographic images. METHODS: A total of 771 bitewing radiographs were divided into two groups: adult (n = 554) and pediatric (n = 217). Two distinct semantic segmentation models were constructed for each group. They were manually labeled by general dentists for semantic segmentation. The inter-examiner reliability of the two examiners was also measured. Finally, the models were trained using transfer learning methodology along with computer science advanced tools, such as ensemble U-Nets with ResNet50, ResNext101, and Vgg19 as the encoders, which were all pretrained on ImageNet weights using a training dataset. RESULTS: Intersection over union (IoU) score was used to evaluate the outcomes of the deep learning model. For the adult dataset, the IoU averaged 98%, 23%, 19%, and 51% for zero, primary, moderate, and advanced carious lesions, respectively. For pediatric bitewings, the IoU averaged 97%, 8%, 17%, and 25% for zero, primary, moderate, and advanced caries, respectively. Advanced caries was more accurately detected than primary caries on adults and pediatric bitewings P < 0.05. CONCLUSIONS: The proposed deep learning models can accurately detect advanced caries in permanent or primary bitewing radiographs. Misclassification mostly occurs between primary and moderate caries. Although the model performed well in correctly classifying the lesions, it can misclassify one as the other or does not accurately capture the depth of the lesion at this early stage. |
format | Online Article Text |
id | pubmed-10693222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-106932222023-12-03 Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition Azhari, Amr Ahmed Helal, Narmin Sabri, Leena M Abduljawad, Abeer Digit Health Original Research OBJECTIVE: The objective of this study was to evaluate the effectiveness of deep learning methods in detecting dental caries from radiographic images. METHODS: A total of 771 bitewing radiographs were divided into two groups: adult (n = 554) and pediatric (n = 217). Two distinct semantic segmentation models were constructed for each group. They were manually labeled by general dentists for semantic segmentation. The inter-examiner reliability of the two examiners was also measured. Finally, the models were trained using transfer learning methodology along with computer science advanced tools, such as ensemble U-Nets with ResNet50, ResNext101, and Vgg19 as the encoders, which were all pretrained on ImageNet weights using a training dataset. RESULTS: Intersection over union (IoU) score was used to evaluate the outcomes of the deep learning model. For the adult dataset, the IoU averaged 98%, 23%, 19%, and 51% for zero, primary, moderate, and advanced carious lesions, respectively. For pediatric bitewings, the IoU averaged 97%, 8%, 17%, and 25% for zero, primary, moderate, and advanced caries, respectively. Advanced caries was more accurately detected than primary caries on adults and pediatric bitewings P < 0.05. CONCLUSIONS: The proposed deep learning models can accurately detect advanced caries in permanent or primary bitewing radiographs. Misclassification mostly occurs between primary and moderate caries. Although the model performed well in correctly classifying the lesions, it can misclassify one as the other or does not accurately capture the depth of the lesion at this early stage. SAGE Publications 2023-11-30 /pmc/articles/PMC10693222/ /pubmed/38047163 http://dx.doi.org/10.1177/20552076231216681 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Azhari, Amr Ahmed Helal, Narmin Sabri, Leena M Abduljawad, Abeer Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title | Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title_full | Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title_fullStr | Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title_full_unstemmed | Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title_short | Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition |
title_sort | artificial intelligence (ai) in restorative dentistry: performance of ai models designed for detection of interproximal carious lesions on primary and permanent dentition |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693222/ https://www.ncbi.nlm.nih.gov/pubmed/38047163 http://dx.doi.org/10.1177/20552076231216681 |
work_keys_str_mv | AT azhariamrahmed artificialintelligenceaiinrestorativedentistryperformanceofaimodelsdesignedfordetectionofinterproximalcariouslesionsonprimaryandpermanentdentition AT helalnarmin artificialintelligenceaiinrestorativedentistryperformanceofaimodelsdesignedfordetectionofinterproximalcariouslesionsonprimaryandpermanentdentition AT sabrileenam artificialintelligenceaiinrestorativedentistryperformanceofaimodelsdesignedfordetectionofinterproximalcariouslesionsonprimaryandpermanentdentition AT abduljawadabeer artificialintelligenceaiinrestorativedentistryperformanceofaimodelsdesignedfordetectionofinterproximalcariouslesionsonprimaryandpermanentdentition |