Cargando…
Genome sequencing of Syzygium cumini (jamun) reveals adaptive evolution in secondary metabolism pathways associated with its medicinal properties
Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world’s largest tree...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693344/ https://www.ncbi.nlm.nih.gov/pubmed/38046611 http://dx.doi.org/10.3389/fpls.2023.1260414 |
Sumario: | Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world’s largest tree genus Syzygium using Oxford Nanopore and 10x Genomics sequencing technologies. We also sequenced and assembled the transcriptome of S. cumini in this study. The tetraploid and highly heterozygous draft genome of S. cumini had a total size of 709.9 Mbp with 61,195 coding genes. The phylogenetic position of S. cumini was established using a comprehensive genome-wide analysis including species from 18 Eudicot plant orders. The existence of neopolyploidy in S. cumini was evident from the higher number of coding genes and expanded gene families resulting from gene duplication events compared to the other two sequenced species from this genus. Comparative evolutionary analyses showed the adaptive evolution of genes involved in the phenylpropanoid-flavonoid (PF) biosynthesis pathway and other secondary metabolites biosynthesis such as terpenoid and alkaloid in S. cumini, along with genes involved in stress tolerance mechanisms, which was also supported by leaf transcriptome data generated in this study. The adaptive evolution of secondary metabolism pathways is associated with the wide range of pharmacological properties, specifically the anti-diabetic property, of this species conferred by the bioactive compounds that act as nutraceutical agents in modern medicine. |
---|