Cargando…

Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients

INTRODUCTION: Positron emission tomography/computed tomography (PET/CT) is routinely used for staging, response assessment, and surveillance in esophageal carcinoma patients. The aim of this study was to investigate whether textural features of pretreatment 18F-fluorodeoxyglucose ((18)F-FDG) PET/CT...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Ajit, Ravina, Mudalsha, Kote, Rutuja, Kumar, Amit, Kashyap, Yashwant, Dasgupta, Subhajit, Reddy, Moulish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693362/
https://www.ncbi.nlm.nih.gov/pubmed/38046976
http://dx.doi.org/10.4103/ijnm.ijnm_1_23
_version_ 1785153143933239296
author Mishra, Ajit
Ravina, Mudalsha
Kote, Rutuja
Kumar, Amit
Kashyap, Yashwant
Dasgupta, Subhajit
Reddy, Moulish
author_facet Mishra, Ajit
Ravina, Mudalsha
Kote, Rutuja
Kumar, Amit
Kashyap, Yashwant
Dasgupta, Subhajit
Reddy, Moulish
author_sort Mishra, Ajit
collection PubMed
description INTRODUCTION: Positron emission tomography/computed tomography (PET/CT) is routinely used for staging, response assessment, and surveillance in esophageal carcinoma patients. The aim of this study was to investigate whether textural features of pretreatment 18F-fluorodeoxyglucose ((18)F-FDG) PET/CT images can contribute to prognosis prediction in carcinoma oesophagus patients. MATERIALS AND METHODS: This is a retrospective study of 30 diagnosed carcinoma esophagus patients. These patients underwent pretreatment 18F-FDG PET/CT for staging. The images were processed in a commercially available textural analysis software. Region of interest was drawn over primary tumor with a 40% threshold and was processed further to derive 92 textural and radiomic parameters. These parameters were then compared between progression group and nonprogression group. The original dataset was subject separately to receiver operating curve analysis. Receiver operating characteristic (ROC) curves were used to identify the cutoff values for textural features with a P < 0.05 for statistical significance. Feature selection was done with principal component analysis. The selected features of each evaluator were subject to 4 machine-learning algorithms. The highest area under the curve (AUC) values was selected for 10 features. RESULTS: A retrospective study of 30 primary carcinoma esophagus patients was done. Patients were followed up after chemo-radiotherapy and they underwent follow-up PET/CT. On the basis of their response, patients were divided into progression group and nonprogression group. Among them, 15 patients showed disease progression and 15 patients were in the nonprogression group. Ten textural analysis parameters turned out to be significant in the prediction of disease progression. Cutoff values were calculated for these parameters according to the ROC curves, GLZLM_long zone emphasis (Gray Level Zone Length Matrix)_long zone emphasis (44.9), GLZLM_low gray level zone emphasis (0.006), GLZLM_short zone low gray level emphasis (0.0032), GLZLM_long zone low gray level emphasis (0.185), GLRLM_long run emphasis (Gray Level Run Length Matrix) (1.31), GLRLM_low gray level run emphasis (0.0058), GLRLM_short run low gray level emphasis (0.005496), GLRLM_long run low gray level emphasis (0.00727), NGLDM_Busyness (Neighborhood Gray Level Difference Matrix) (0.75), and gray level co-occurrence matrix_homogeneity (0.37). Feature selection by principal components analysis and feature classification by the K-nearest neighbor machine-learning model using independent training and test samples yielded the overall highest AUC. CONCLUSIONS: Textural analysis parameters could provide prognostic information in carcinoma esophagus patients. Larger multicenter studies are needed for better clinical prognostication of these parameters.
format Online
Article
Text
id pubmed-10693362
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-106933622023-12-03 Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients Mishra, Ajit Ravina, Mudalsha Kote, Rutuja Kumar, Amit Kashyap, Yashwant Dasgupta, Subhajit Reddy, Moulish Indian J Nucl Med Original Article INTRODUCTION: Positron emission tomography/computed tomography (PET/CT) is routinely used for staging, response assessment, and surveillance in esophageal carcinoma patients. The aim of this study was to investigate whether textural features of pretreatment 18F-fluorodeoxyglucose ((18)F-FDG) PET/CT images can contribute to prognosis prediction in carcinoma oesophagus patients. MATERIALS AND METHODS: This is a retrospective study of 30 diagnosed carcinoma esophagus patients. These patients underwent pretreatment 18F-FDG PET/CT for staging. The images were processed in a commercially available textural analysis software. Region of interest was drawn over primary tumor with a 40% threshold and was processed further to derive 92 textural and radiomic parameters. These parameters were then compared between progression group and nonprogression group. The original dataset was subject separately to receiver operating curve analysis. Receiver operating characteristic (ROC) curves were used to identify the cutoff values for textural features with a P < 0.05 for statistical significance. Feature selection was done with principal component analysis. The selected features of each evaluator were subject to 4 machine-learning algorithms. The highest area under the curve (AUC) values was selected for 10 features. RESULTS: A retrospective study of 30 primary carcinoma esophagus patients was done. Patients were followed up after chemo-radiotherapy and they underwent follow-up PET/CT. On the basis of their response, patients were divided into progression group and nonprogression group. Among them, 15 patients showed disease progression and 15 patients were in the nonprogression group. Ten textural analysis parameters turned out to be significant in the prediction of disease progression. Cutoff values were calculated for these parameters according to the ROC curves, GLZLM_long zone emphasis (Gray Level Zone Length Matrix)_long zone emphasis (44.9), GLZLM_low gray level zone emphasis (0.006), GLZLM_short zone low gray level emphasis (0.0032), GLZLM_long zone low gray level emphasis (0.185), GLRLM_long run emphasis (Gray Level Run Length Matrix) (1.31), GLRLM_low gray level run emphasis (0.0058), GLRLM_short run low gray level emphasis (0.005496), GLRLM_long run low gray level emphasis (0.00727), NGLDM_Busyness (Neighborhood Gray Level Difference Matrix) (0.75), and gray level co-occurrence matrix_homogeneity (0.37). Feature selection by principal components analysis and feature classification by the K-nearest neighbor machine-learning model using independent training and test samples yielded the overall highest AUC. CONCLUSIONS: Textural analysis parameters could provide prognostic information in carcinoma esophagus patients. Larger multicenter studies are needed for better clinical prognostication of these parameters. Wolters Kluwer - Medknow 2023 2023-10-10 /pmc/articles/PMC10693362/ /pubmed/38046976 http://dx.doi.org/10.4103/ijnm.ijnm_1_23 Text en Copyright: © 2023 Indian Journal of Nuclear Medicine https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Original Article
Mishra, Ajit
Ravina, Mudalsha
Kote, Rutuja
Kumar, Amit
Kashyap, Yashwant
Dasgupta, Subhajit
Reddy, Moulish
Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title_full Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title_fullStr Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title_full_unstemmed Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title_short Role of Textural Analysis of Pretreatment (18)F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Prediction in Esophageal Carcinoma Patients
title_sort role of textural analysis of pretreatment (18)f fluorodeoxyglucose positron emission tomography/computed tomography in response prediction in esophageal carcinoma patients
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693362/
https://www.ncbi.nlm.nih.gov/pubmed/38046976
http://dx.doi.org/10.4103/ijnm.ijnm_1_23
work_keys_str_mv AT mishraajit roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT ravinamudalsha roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT koterutuja roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT kumaramit roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT kashyapyashwant roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT dasguptasubhajit roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients
AT reddymoulish roleoftexturalanalysisofpretreatment18ffluorodeoxyglucosepositronemissiontomographycomputedtomographyinresponsepredictioninesophagealcarcinomapatients