Cargando…
Predicting risk of obesity in overweight adults using interpretable machine learning algorithms
OBJECTIVE: To screen for predictive obesity factors in overweight populations using an optimal and interpretable machine learning algorithm. METHODS: This cross-sectional study was conducted between June 2011 and January 2012. The participants were randomly selected using a simple random sampling te...
Autores principales: | Lin, Wei, Shi, Songchang, Huang, Huibin, Wen, Junping, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693451/ https://www.ncbi.nlm.nih.gov/pubmed/38047114 http://dx.doi.org/10.3389/fendo.2023.1292167 |
Ejemplares similares
-
Development of a Risk Model for Predicting Microalbuminuria in the Chinese Population Using Machine Learning Algorithms
por: Lin, Wei, et al.
Publicado: (2022) -
Value of machine learning algorithms for predicting diabetes risk: A subset analysis from a real‐world retrospective cohort study
por: Mao, Yaqian, et al.
Publicado: (2022) -
Sequential algorithm to stratify liver fibrosis risk in overweight/obese metabolic dysfunction-associated fatty liver disease
por: Lee, Chi-Ho, et al.
Publicado: (2023) -
The Prevalence of Overweight and Obesity in an Adult Kuwaiti Population in 2014
por: Weiderpass, Elisabete, et al.
Publicado: (2019) -
Association between weight change and risk of metabolic abnormalities in non-overweight/obese and overweight/obese population: A retrospective cohort study among Chinese adults
por: Dai, Yanyan, et al.
Publicado: (2022)