Cargando…
U-net based vortex detection in Bose–Einstein condensates with automatic correction for manually mislabeled data
Quantum vortices in Bose–Einstein condensates (BECs) are essential phenomena in condensed matter physics, and precisely locating their positions, especially the vortex core, is a precondition for studying their properties. With the rise of machine learning, there is a possibility to expedite the loc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693587/ https://www.ncbi.nlm.nih.gov/pubmed/38042934 http://dx.doi.org/10.1038/s41598-023-48719-9 |
Sumario: | Quantum vortices in Bose–Einstein condensates (BECs) are essential phenomena in condensed matter physics, and precisely locating their positions, especially the vortex core, is a precondition for studying their properties. With the rise of machine learning, there is a possibility to expedite the localization process and provide accurate predictions. However, traditional machine learning requires particular considerable amount of manual data annotation, leading to uncontrollable accuracy. In this paper, we utilize the U-Net method to detect vortex positions accurately at the pixel level and propose an Automatic Correction Labeling (ACL) approach to optimize the acquisition of data sets for vortex localization in BECs. This approach addresses inaccuracies in the labeled vortex positions and improves the accuracy of vortex localization, especially the vortex core positions, while enhancing the tolerance for human mislabeling. The main process involves Rough Labeling [Formula: see text] Machine Learning [Formula: see text] Probability Region Search [Formula: see text] Data Relabeling [Formula: see text] Machine Learning again. The objective of ACL is to secure more accurate labeled data for model retraining. Through vortex localization experiments conducted in a two-dimensional Bose-Einstein condensate, our results establish the following: 1. Even under conditions of biased and missing manual annotations, U-Net can still accurately locate vortex positions; 2. Vortices exhibit certain regularities, and training U-Net with a small number of samples yields excellent predictive consequences; 3. The machine learning vortex locator based on the ACL method effectively corrects errors in manually annotated data, significantly improving the model’s performance metrics, thus enhancing the precision and metrics of vortex localization. This substantial advancement in the application of machine learning in vortex localization provides an effective way for vortex dynamics localization. Furthermore, this method of obtaining more accurate positions of approximate human labels through machine learning offers new insights for machine learning in other types of image recognition problems. |
---|