Cargando…
Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques
BACKGROUND: To identify novel gene combinations and to develop an early diagnostic model for Polycystic Ovary Syndrome (PCOS) through the integration of artificial neural networks (ANN) and random forest (RF) methods. METHODS: We retrieved and processed gene expression datasets for PCOS from the Gen...
Autores principales: | Wu, Yumi, Xiao, QiWei, Wang, ShouDong, Xu, Huanfang, Fang, YiGong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693771/ https://www.ncbi.nlm.nih.gov/pubmed/38050562 http://dx.doi.org/10.2147/JIR.S438838 |
Ejemplares similares
-
Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network
por: Xie, Ning-Ning, et al.
Publicado: (2020) -
An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image
por: Suha, Sayma Alam, et al.
Publicado: (2022) -
Polycystic Ovary Syndrome Detection Machine Learning Model Based on Optimized Feature Selection and Explainable Artificial Intelligence
por: Elmannai, Hela, et al.
Publicado: (2023) -
Estrogen Receptors in Polycystic Ovary Syndrome
por: Xu, Xue-Ling, et al.
Publicado: (2021) -
Machine learning classification of polycystic ovary syndrome based on radial pulse wave analysis
por: Lim, Jiekee, et al.
Publicado: (2023)