Cargando…
Machine Learning-Based CEMRI Radiomics Integrating LI-RADS Features Achieves Optimal Evaluation of Hepatocellular Carcinoma Differentiation
PURPOSE: To develop and compare various machine learning (ML) classifiers that employ radiomics extracted from contrast-enhanced magnetic resonance imaging (CEMRI) for diagnosing pathological differentiation of hepatocellular carcinoma (HCC), and validate the performance of the best model. METHODS:...
Autores principales: | Liu, Hai-Feng, Lu, Yang, Wang, Qing, Lu, Yu-Jie, Xing, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693828/ https://www.ncbi.nlm.nih.gov/pubmed/38050577 http://dx.doi.org/10.2147/JHC.S434895 |
Ejemplares similares
-
A nomogram model integrating LI-RADS features and radiomics based on contrast-enhanced magnetic resonance imaging for predicting microvascular invasion in hepatocellular carcinoma falling the Milan criteria
por: Liu, Hai-Feng, et al.
Publicado: (2022) -
Man or machine? Prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma
por: Jiang, Hanyu, et al.
Publicado: (2019) -
Diagnosis of Non-Hepatocellular Carcinoma Malignancies in Patients With Risks for Hepatocellular Carcinoma: CEUS LI-RADS Versus CT/MRI LI-RADS
por: Hu, Yi-Xin, et al.
Publicado: (2021) -
Imaging features of histological subtypes of hepatocellular carcinoma: Implication for LI-RADS
por: Cannella, Roberto, et al.
Publicado: (2021) -
CEUS LI-RADS for diagnosis of hepatocellular carcinoma in individuals without LI-RADS-defined hepatocellular carcinoma risk factors
por: Huang, Zhe, et al.
Publicado: (2023)