Cargando…

Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study

OBJECTIVE: Pulmonary embolism, cardiac embolism, and even cerebral embolism due to paraspinal vein leakage (PVL) are increasingly reported, and their risk factors need to be adequately investigated for prevention. To this end, this study investigated the correlation of the distribution and morpholog...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fan, Liu, Zhengang, Li, Pengfu, Zhu, Qingsan, He, Qinwan, Liang, Yuling, Zhang, Boyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons Australia, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694026/
https://www.ncbi.nlm.nih.gov/pubmed/37880194
http://dx.doi.org/10.1111/os.13924
_version_ 1785153286766067712
author Yang, Fan
Liu, Zhengang
Li, Pengfu
Zhu, Qingsan
He, Qinwan
Liang, Yuling
Zhang, Boyin
author_facet Yang, Fan
Liu, Zhengang
Li, Pengfu
Zhu, Qingsan
He, Qinwan
Liang, Yuling
Zhang, Boyin
author_sort Yang, Fan
collection PubMed
description OBJECTIVE: Pulmonary embolism, cardiac embolism, and even cerebral embolism due to paraspinal vein leakage (PVL) are increasingly reported, and their risk factors need to be adequately investigated for prevention. To this end, this study investigated the correlation of the distribution and morphological characteristics of fracture lines with the occurrence of PVL after percutaneous vertebroplasty (PVP), which has not been previously reported. METHODS: Patients with acute single‐segment thoracolumbar osteoporotic vertebral compression fractures (OVCFs) treated with PVP at our institution from January 2019 to July 2022 were selected for a matched case–control study. The case and control groups included those with and without PVL, respectively, matched at a 1:1 ratio based on general clinical characteristics. Additionally, fracture map and heatmap analysis was performed in both groups. In addition to the general clinical characteristics, the vertebral height ratio, puncture angle, delivery rate, and indexes were assessed via the three‐dimensional CT reconstruction fracture line mapping technique, namely, the distribution of fracture lines, fracture line length, main fracture line shape, location of fracture line involvement, and number of fracture line branches, were compared between the two groups. The Wilcoxon rank‐sum test, t tests, analysis of variance, and conditional logistic regression were used for statistical analysis. RESULTS: Among 658 patients with OVCFs, 54 who did and 54 who did not develop PVL were included in this study. Significant differences in the puncture angle, fracture line distribution (MR‐1, ML‐2, MM‐2, MR‐2, ML‐3, MM‐3, LL‐1, LM‐1, LL‐2, LM‐2), fracture line involvement of the posterior wall, total fracture line length, and main fracture line length were found between the two groups (p < 0.05). Logistic univariate analysis showed significant differences in the puncture angle, fracture line distribution (MR‐1, ML‐2, MM‐2, MR‐2, ML‐3, MM‐3, LL‐1, LL‐2, LM‐2, LL‐3), total fracture line length, main fracture line length, and fracture line involvement of the posterior wall between the two groups (p < 0.05). Logistic multifactorial analysis showed that the fracture line distribution (UR‐3, ML‐3, LM‐2, LR‐2) and main fracture line length were independent risk factors for the development of PVL in both groups. In addition, the fracture maps and heatmaps showed a greater degree of fracture line encapsulation and more extensive involvement in the middle and lower regions of the vertebral body in the PVL group than in the control group. CONCLUSIONS: Through a three‐dimensional computed tomography reconstruction‐based fracture line mapping technique, this study revealed for the first time that the distribution of fracture lines (UR‐3, ML‐3, LM‐2, LR‐2) and main fracture line length were independent risk factors for PVL after PVP in patients with acute single‐segment thoracolumbar OVCFs. In addition, we hypothesized that the fracture line‐vein traffic branch that may appear within 2 weeks after injury in acute OVCF patients may be one of the mechanisms influencing the above potential independent risk factors associated with PVL.
format Online
Article
Text
id pubmed-10694026
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons Australia, Ltd
record_format MEDLINE/PubMed
spelling pubmed-106940262023-12-05 Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study Yang, Fan Liu, Zhengang Li, Pengfu Zhu, Qingsan He, Qinwan Liang, Yuling Zhang, Boyin Orthop Surg Clinical Articles OBJECTIVE: Pulmonary embolism, cardiac embolism, and even cerebral embolism due to paraspinal vein leakage (PVL) are increasingly reported, and their risk factors need to be adequately investigated for prevention. To this end, this study investigated the correlation of the distribution and morphological characteristics of fracture lines with the occurrence of PVL after percutaneous vertebroplasty (PVP), which has not been previously reported. METHODS: Patients with acute single‐segment thoracolumbar osteoporotic vertebral compression fractures (OVCFs) treated with PVP at our institution from January 2019 to July 2022 were selected for a matched case–control study. The case and control groups included those with and without PVL, respectively, matched at a 1:1 ratio based on general clinical characteristics. Additionally, fracture map and heatmap analysis was performed in both groups. In addition to the general clinical characteristics, the vertebral height ratio, puncture angle, delivery rate, and indexes were assessed via the three‐dimensional CT reconstruction fracture line mapping technique, namely, the distribution of fracture lines, fracture line length, main fracture line shape, location of fracture line involvement, and number of fracture line branches, were compared between the two groups. The Wilcoxon rank‐sum test, t tests, analysis of variance, and conditional logistic regression were used for statistical analysis. RESULTS: Among 658 patients with OVCFs, 54 who did and 54 who did not develop PVL were included in this study. Significant differences in the puncture angle, fracture line distribution (MR‐1, ML‐2, MM‐2, MR‐2, ML‐3, MM‐3, LL‐1, LM‐1, LL‐2, LM‐2), fracture line involvement of the posterior wall, total fracture line length, and main fracture line length were found between the two groups (p < 0.05). Logistic univariate analysis showed significant differences in the puncture angle, fracture line distribution (MR‐1, ML‐2, MM‐2, MR‐2, ML‐3, MM‐3, LL‐1, LL‐2, LM‐2, LL‐3), total fracture line length, main fracture line length, and fracture line involvement of the posterior wall between the two groups (p < 0.05). Logistic multifactorial analysis showed that the fracture line distribution (UR‐3, ML‐3, LM‐2, LR‐2) and main fracture line length were independent risk factors for the development of PVL in both groups. In addition, the fracture maps and heatmaps showed a greater degree of fracture line encapsulation and more extensive involvement in the middle and lower regions of the vertebral body in the PVL group than in the control group. CONCLUSIONS: Through a three‐dimensional computed tomography reconstruction‐based fracture line mapping technique, this study revealed for the first time that the distribution of fracture lines (UR‐3, ML‐3, LM‐2, LR‐2) and main fracture line length were independent risk factors for PVL after PVP in patients with acute single‐segment thoracolumbar OVCFs. In addition, we hypothesized that the fracture line‐vein traffic branch that may appear within 2 weeks after injury in acute OVCF patients may be one of the mechanisms influencing the above potential independent risk factors associated with PVL. John Wiley & Sons Australia, Ltd 2023-10-25 /pmc/articles/PMC10694026/ /pubmed/37880194 http://dx.doi.org/10.1111/os.13924 Text en © 2023 The Authors. Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Clinical Articles
Yang, Fan
Liu, Zhengang
Li, Pengfu
Zhu, Qingsan
He, Qinwan
Liang, Yuling
Zhang, Boyin
Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title_full Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title_fullStr Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title_full_unstemmed Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title_short Analysis of Potential Risk Factors for Cement Leakage into Paraspinal Veins after Vertebroplasty for Acute Osteoporotic Vertebral Fractures Based on a 3D Reconstruction Technique: A Retrospective Matched Case–Control Study
title_sort analysis of potential risk factors for cement leakage into paraspinal veins after vertebroplasty for acute osteoporotic vertebral fractures based on a 3d reconstruction technique: a retrospective matched case–control study
topic Clinical Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694026/
https://www.ncbi.nlm.nih.gov/pubmed/37880194
http://dx.doi.org/10.1111/os.13924
work_keys_str_mv AT yangfan analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT liuzhengang analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT lipengfu analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT zhuqingsan analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT heqinwan analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT liangyuling analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy
AT zhangboyin analysisofpotentialriskfactorsforcementleakageintoparaspinalveinsaftervertebroplastyforacuteosteoporoticvertebralfracturesbasedona3dreconstructiontechniquearetrospectivematchedcasecontrolstudy