Cargando…

Offsets in tide-gauge reference levels detected by satellite altimetry: ten case studies

Comparing measurements of absolute sea level by satellite altimetry and relative sea level by a tide gauge can reveal errors in either measurement system. Combining the measurements can determine vertical land motion (VLM) at the tide gauge. We here discuss ten case studies in which a tide gauge has...

Descripción completa

Detalles Bibliográficos
Autores principales: Ray, R. D., Widlansky, M. J., Genz, A. S., Thompson, P. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694126/
http://dx.doi.org/10.1007/s00190-023-01800-7
Descripción
Sumario:Comparing measurements of absolute sea level by satellite altimetry and relative sea level by a tide gauge can reveal errors in either measurement system. Combining the measurements can determine vertical land motion (VLM) at the tide gauge. We here discuss ten case studies in which a tide gauge has likely experienced a small ([Formula: see text]  cm), discontinuous offset in the vertical, suggesting inadvertent loss of reference-level stability. Proper interpretation of offsets is helped if independent VLM measurements from nearby geodetic stations are available. In two cases, earthquake-induced VLM cannot be ruled out, although it appears unlikely. Offsets as small as 1–2 cm can be detected when both altimeter and tide gauge successfully observe the same ocean signal. This is most likely to occur for tide gauges located on small, open-ocean islands. Tide gauges near large land masses are typically more challenging owing to inadequacies of satellite altimetry near land and to differences between coastal and open-ocean sea levels. The case studies highlight the utility of satellite altimetry for tide-gauge quality control. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00190-023-01800-7.