Cargando…
Taxifolin protects against doxorubicin-induced cardiotoxicity and ferroptosis by adjusting microRNA-200a-mediated Nrf2 signaling pathway
The chemotherapeutic agent doxorubicin (Dox) is commonly used to treat various types of cancer, even though it can cause life-threatening cardiotoxicity. Clinically, there is no particularly effective way to treat Dox-induced cardiotoxicity. Therefore, it is imperative to identify compounds that can...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694176/ http://dx.doi.org/10.1016/j.heliyon.2023.e22011 |
Sumario: | The chemotherapeutic agent doxorubicin (Dox) is commonly used to treat various types of cancer, even though it can cause life-threatening cardiotoxicity. Clinically, there is no particularly effective way to treat Dox-induced cardiotoxicity. Therefore, it is imperative to identify compounds that can effectively alleviate Dox-induced cardiotoxicity. Ferroptosis and oxidative stress play a key role in Dox-induced cardiotoxicity, and the inhibition of ferroptosis and oxidative stress could effectively protect against doxorubicin-induced cardiotoxicity. Taxifolin (TAX) is a flavonoid commonly found in onions and citrus fruits. In the present study, we evaluated the effects of TAX on Dox-induced cardiac injury and dysfunction and aimed to explore the mechanisms underlying these effects. Using a mouse model of Dox-induced cardiotoxicity, we administered 20 mg/kg/day of TAX by gavage for 2 weeks. A week after the first use of TAX, each mouse was administered a 10 mg/kg dose of Dox. TAX was first evaluated for its cardioprotective properties, and the outcomes showed that TAX significantly reduced the damage caused by Dox to the myocardium in terms of structural and functional damage by effectively inhibiting ferroptosis and oxidative stress. In vivo, echocardiography, histopathologic assay, serum biochemical analysis and western blotting was used to find the results that Dox promoted ferroptosis-induced cardiomyocyte death, while TAX reversed these effects. In vitro, we also found that TAX alleviated Dox-induced cardiotoxicity by using ROS/DHE staining assay, Cellular immunofluorescence and western blotting. TAX increasing expression of microRNA-200a (miR-200a) which affects ferroptosis by activating Nrf2 signaling pathway. We believe that TAX inhibits ferroptosis and is a potential phytochemical that prevents Dox-induced cardiotoxicity. |
---|