Cargando…

MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies

For studies using microbiome data, the ability to robustly combine data from technically and biologically distinct microbiome studies is a crucial means of supporting more robust and clinically relevant inferences. Formidable technical challenges arise when attempting to combine data from technicall...

Descripción completa

Detalles Bibliográficos
Autores principales: Minot, Samuel S., Garb, Bailey, Roldan, Alennie, Tang, Alice S., Oskotsky, Tomiko T., Rosenthal, Christopher, Hoffman, Noah G., Sirota, Marina, Golob, Jonathan L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694490/
https://www.ncbi.nlm.nih.gov/pubmed/37939711
http://dx.doi.org/10.1016/j.crmeth.2023.100639
_version_ 1785153389738328064
author Minot, Samuel S.
Garb, Bailey
Roldan, Alennie
Tang, Alice S.
Oskotsky, Tomiko T.
Rosenthal, Christopher
Hoffman, Noah G.
Sirota, Marina
Golob, Jonathan L.
author_facet Minot, Samuel S.
Garb, Bailey
Roldan, Alennie
Tang, Alice S.
Oskotsky, Tomiko T.
Rosenthal, Christopher
Hoffman, Noah G.
Sirota, Marina
Golob, Jonathan L.
author_sort Minot, Samuel S.
collection PubMed
description For studies using microbiome data, the ability to robustly combine data from technically and biologically distinct microbiome studies is a crucial means of supporting more robust and clinically relevant inferences. Formidable technical challenges arise when attempting to combine data from technically diverse 16S rRNA gene variable region amplicon sequencing (16S) studies. Closed operational taxonomic units and taxonomy are criticized as being heavily dependent upon reference sets and with limited precision relative to the underlying biology. Phylogenetic placement has been demonstrated to be a promising taxonomy-free manner of harmonizing microbiome data, but it has lacked a validated count-based feature suitable for use in machine learning and association studies. Here we introduce a phylogenetic-placement-based, taxonomy-independent, compositional feature of microbiota: phylotypes. Phylotypes were predictive of clinical outcomes such as obesity or pre-term birth on technically diverse independent validation sets harmonized post hoc. Thus, phylotypes enable the rigorous cross-validation of 16S-based clinical prognostic models and associative microbiome studies.
format Online
Article
Text
id pubmed-10694490
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106944902023-12-05 MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies Minot, Samuel S. Garb, Bailey Roldan, Alennie Tang, Alice S. Oskotsky, Tomiko T. Rosenthal, Christopher Hoffman, Noah G. Sirota, Marina Golob, Jonathan L. Cell Rep Methods Article For studies using microbiome data, the ability to robustly combine data from technically and biologically distinct microbiome studies is a crucial means of supporting more robust and clinically relevant inferences. Formidable technical challenges arise when attempting to combine data from technically diverse 16S rRNA gene variable region amplicon sequencing (16S) studies. Closed operational taxonomic units and taxonomy are criticized as being heavily dependent upon reference sets and with limited precision relative to the underlying biology. Phylogenetic placement has been demonstrated to be a promising taxonomy-free manner of harmonizing microbiome data, but it has lacked a validated count-based feature suitable for use in machine learning and association studies. Here we introduce a phylogenetic-placement-based, taxonomy-independent, compositional feature of microbiota: phylotypes. Phylotypes were predictive of clinical outcomes such as obesity or pre-term birth on technically diverse independent validation sets harmonized post hoc. Thus, phylotypes enable the rigorous cross-validation of 16S-based clinical prognostic models and associative microbiome studies. Elsevier 2023-11-07 /pmc/articles/PMC10694490/ /pubmed/37939711 http://dx.doi.org/10.1016/j.crmeth.2023.100639 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Minot, Samuel S.
Garb, Bailey
Roldan, Alennie
Tang, Alice S.
Oskotsky, Tomiko T.
Rosenthal, Christopher
Hoffman, Noah G.
Sirota, Marina
Golob, Jonathan L.
MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title_full MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title_fullStr MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title_full_unstemmed MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title_short MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
title_sort maliampi enables generalizable and taxonomy-independent microbiome features from technically diverse 16s-based microbiome studies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694490/
https://www.ncbi.nlm.nih.gov/pubmed/37939711
http://dx.doi.org/10.1016/j.crmeth.2023.100639
work_keys_str_mv AT minotsamuels maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT garbbailey maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT roldanalennie maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT tangalices maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT oskotskytomikot maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT rosenthalchristopher maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT hoffmannoahg maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT sirotamarina maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies
AT golobjonathanl maliampienablesgeneralizableandtaxonomyindependentmicrobiomefeaturesfromtechnicallydiverse16sbasedmicrobiomestudies