Cargando…
MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies
For studies using microbiome data, the ability to robustly combine data from technically and biologically distinct microbiome studies is a crucial means of supporting more robust and clinically relevant inferences. Formidable technical challenges arise when attempting to combine data from technicall...
Autores principales: | Minot, Samuel S., Garb, Bailey, Roldan, Alennie, Tang, Alice S., Oskotsky, Tomiko T., Rosenthal, Christopher, Hoffman, Noah G., Sirota, Marina, Golob, Jonathan L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694490/ https://www.ncbi.nlm.nih.gov/pubmed/37939711 http://dx.doi.org/10.1016/j.crmeth.2023.100639 |
Ejemplares similares
-
VMAP: Vaginal Microbiome Atlas During Pregnancy
por: Parraga-Leo, Antonio, et al.
Publicado: (2023) -
Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research
por: Schloss, Patrick D.
Publicado: (2018) -
Identification of robust and generalizable biomarkers for microbiome-based stratification in lifestyle interventions
por: Chen, Jiarui, et al.
Publicado: (2023) -
Similarities and differences in Alzheimer’s dementia comorbidities in racialized populations identified from electronic medical records
por: Woldemariam, Sarah R., et al.
Publicado: (2023) -
Taxonomy-aware feature engineering for microbiome classification
por: Oudah, Mai, et al.
Publicado: (2018)