Cargando…

Molecular geometric deep learning

Molecular representation learning plays an important role in molecular property prediction. Existing molecular property prediction models rely on the de facto standard of covalent-bond-based molecular graphs for representing molecular topology at the atomic level and totally ignore the non-covalent...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Cong, Luo, Jiawei, Xia, Kelin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694498/
https://www.ncbi.nlm.nih.gov/pubmed/37875121
http://dx.doi.org/10.1016/j.crmeth.2023.100621
Descripción
Sumario:Molecular representation learning plays an important role in molecular property prediction. Existing molecular property prediction models rely on the de facto standard of covalent-bond-based molecular graphs for representing molecular topology at the atomic level and totally ignore the non-covalent interactions within the molecule. In this study, we propose a molecular geometric deep learning model to predict the properties of molecules that aims to comprehensively consider the information of covalent and non-covalent interactions of molecules. The essential idea is to incorporate a more general molecular representation into geometric deep learning (GDL) models. We systematically test molecular GDL (Mol-GDL) on fourteen commonly used benchmark datasets. The results show that Mol-GDL can achieve a better performance than state-of-the-art (SOTA) methods. Extensive tests have demonstrated the important role of non-covalent interactions in molecular property prediction and the effectiveness of Mol-GDL models.