Cargando…
Combining clinical notes with structured electronic health records enhances the prediction of mental health crises
An automatic prediction of mental health crises can improve caseload prioritization and enable preventative interventions, improving patient outcomes and reducing costs. We combine structured electronic health records (EHRs) with clinical notes from 59,750 de-identified patients to predict the risk...
Autores principales: | Garriga, Roger, Buda, Teodora Sandra, Guerreiro, João, Omaña Iglesias, Jesús, Estella Aguerri, Iñaki, Matić, Aleksandar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694623/ https://www.ncbi.nlm.nih.gov/pubmed/37913776 http://dx.doi.org/10.1016/j.xcrm.2023.101260 |
Ejemplares similares
-
Machine learning model to predict mental health crises from electronic health records
por: Garriga, Roger, et al.
Publicado: (2022) -
Foundations for fairness in digital health apps
por: Buda, Teodora Sandra, et al.
Publicado: (2022) -
Two edges of the screen: Unpacking positive and negative associations between phone use in everyday contexts and subjective well-being
por: Buda, Teodora Sandra, et al.
Publicado: (2023) -
On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views
por: Zaidi, Abdellatif, et al.
Publicado: (2020) -
Innovation is needed in creating electronic health records for humanitarian crises and displaced populations
por: Shrestha, Anmol, et al.
Publicado: (2022)