Cargando…
Arbutin alleviates fatty liver by inhibiting ferroptosis via FTO/SLC7A11 pathway
Non-alcoholic fatty liver disease (NAFLD) is a potentially serious disease that affects 30 % of the global population and poses a significant risk to human health. However, to date, no safe, effective and appropriate treatment modalities are available. In recent years, ferroptosis has emerged as a s...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694775/ https://www.ncbi.nlm.nih.gov/pubmed/37984229 http://dx.doi.org/10.1016/j.redox.2023.102963 |
Sumario: | Non-alcoholic fatty liver disease (NAFLD) is a potentially serious disease that affects 30 % of the global population and poses a significant risk to human health. However, to date, no safe, effective and appropriate treatment modalities are available. In recent years, ferroptosis has emerged as a significant mode of cell death and has been found to play a key regulatory role in the development of NAFLD. In this study, we found that arbutin (ARB), a natural antioxidant derived from Arctostaphylos uva-ursi (L.), inhibits the onset of ferroptosis and ameliorates high-fat diet-induced NAFLD in vivo and in vitro. Using reverse docking, we identified the demethylase fat mass and obesity-related protein (FTO) as a potential target of ARB. Subsequent mechanistic studies revealed that ARB plays a role in controlling methylation of the SLC7A11 gene through inhibition of FTO. In addition, we demonstrated that SLC7A11 could alleviate the development of NAFLD in vivo and in vitro. Our findings identify the FTO/SLC7A11 axis as a potential therapeutic target for the treatment of NAFLD. Specifically, we show that ARB alleviates NAFLD by acting on the FTO/SLC7A11 pathway to inhibit ferroptosis. |
---|