Cargando…
Deep generative design of porous organic cages via a variational autoencoder
Porous organic cages (POCs) are a class of porous molecular materials characterised by their tunable, intrinsic porosity; this functional property makes them candidates for applications including guest storage and separation. Typically formed via dynamic covalent chemistry reactions from multifuncti...
Autores principales: | Zhou, Jiajun, Mroz, Austin, Jelfs, Kim E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695006/ http://dx.doi.org/10.1039/d3dd00154g |
Ejemplares similares
-
An evolutionary algorithm for the discovery of porous organic cages
por: Berardo, Enrico, et al.
Publicado: (2018) -
Coarse-grained modelling to predict the packing of porous organic cages
por: Wolpert, Emma H., et al.
Publicado: (2022) -
Unlocking the computational design of metal–organic cages
por: Tarzia, Andrew, et al.
Publicado: (2022) -
Porous liquids – the future is looking emptier
por: Egleston, Benjamin D., et al.
Publicado: (2022) -
Explainable graph neural networks for organic cages
por: Yuan, Qi, et al.
Publicado: (2022)