Cargando…

A Discussion of the Contemporary Prediction Models for Atrial Fibrillation

Atrial Fibrillation is a complex disease state with many environmental and genetic risk factors. While there are environmental factors that have been shown to increase an individual’s risk of atrial fibrillation, it has become clear that atrial fibrillation has a genetic component that influences wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenberg, Michael A., Adewumi, Joseph, Aleong, Ryan G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695401/
https://www.ncbi.nlm.nih.gov/pubmed/38050581
http://dx.doi.org/10.18103/mra.v11i10.4481
Descripción
Sumario:Atrial Fibrillation is a complex disease state with many environmental and genetic risk factors. While there are environmental factors that have been shown to increase an individual’s risk of atrial fibrillation, it has become clear that atrial fibrillation has a genetic component that influences why some patients are at a higher risk of developing atrial fibrillation compared to others. This review will first discuss the clinical diagnosis of atrial fibrillation and the corresponding rhythm atrial flutter. We will then discuss how a patients’ risk of stroke can be assessed by using other clinical co-morbidities. We will then review the clinical risk factors that can be used to help predict an individual patient’s risk of atrial fibrillation. Many of the clinical risk factors have been used to create several different risk scoring methods that will be reviewed. We will then discuss how genetics can be used to identify individuals who are at higher risk for developing atrial fibrillation. We will discuss genome-wide association studies and other sequencing high-throughput sequencing studies. Finally, we will touch on how genetic variants derived from a genome-wide association studies can be used to calculate an individual’s polygenic risk score for atrial fibrillation. An atrial fibrillation polygenic risk score can be used to identify patients at higher risk of developing atrial fibrillation and may allow for a reduction in some of the complications associated with atrial fibrillation such as cerebrovascular accidents and the development of heart failure. Finally, there is a brief discussion of how artificial intelligence models can be used to predict which patients will develop atrial fibrillation.